
Bioinformatics and Programming
AU course: Bioinformatik og programmering - 2024

Table of contents

Welcome 1
Course description . 1
Course contents . 1

Curriculum 3

Schedule 5
Week 1 . 5
Week 2 . 6
Week 3 . 6

I Learning Python 15

1 Preface 17

2 Before you begin 19
Install Python . 19
The text editor . 19
The terminal . 19
Create a conda environment for the course . 24
You are all set . 25

3 Appendix: Conda environment for BSF 27
Creating an environment for BSF . 27
Starting PyMol . 29

4 Writing a program 31
Hello World . 31
Error Messages . 34
Strings . 36
Comments . 37

5 Dealing with values 39
Math . 39
Logic . 43
Variables . 46

iii

Different types of values . 49
Mixed exercises . 52

6 The order of events 57
Precedence of Operators . 57
Statements and Expressions . 59
Substitution and Reduction . 60
General exercises . 63

7 Course tools 73
Wax on, wax off . 73
A helping hand . 75

8 Controlling behavior 77
If-statement . 77
Else-statement . 79
Blocks of code . 81
Elif-statement . 81
General exercises . 83

9 Organizing code 87
Functions . 87
Functions can take arguments . 92
Functions and variables . 94
Builtin functions . 96
General exercises . 98

10 Values are objects 105
Methods . 105
Using the Python documentation . 107
String formatting . 108
Indexing and slicing strings . 111
General exercises . 115

11 Lists of things 117
Lists . 117
Indexing and slicing lists . 119
General exercises . 124

12 Pairs of things 125
Dictionaries . 125
General exercises . 127

13 Grouping values 131
Tuples . 131

iv

Tuple assignment . 132

14 Iterating values 135
The for-loop . 135

15 Working with files 141
Writing files . 141
Reading files . 143
General exercises . 145

16 Structuring data 147
General exercises . 154

17 Recursion 159
Recursion . 159
Divide and conquer . 160

18 Testing your code 163
Why test your code? . 163
Basic testing . 163
The project testing utility . 164

II Python projects 167

19 Translating ORFs 169
Project files . 169
Translating a single codon . 170
Splitting an open reading frame into codons . 171
Translating an open reading frame . 172

20 Primer analysis 173
Count the number of bases in your candidate primer 173
Compute the melting temperature . 174
Reverse complement the sequence . 175
Check for hairpins . 175

21 Pairwise alignment 177
Filling in the dynamic programming matrix . 178
Reconstructing the optimal alignment . 182

22 Codon usage 187
Read an open reading frame and count its codons 189
Group codon counts by amino acid . 190
Turn counts into frequencies . 192

v

Compute the codon usage . 194

23 HIV sub-groups 195
Compute the similarity of two sequences . 196
Read the HIV sequences into your program . 198
Compare your HIV sequence to HIV sequences of known subtype 199
Compute maximum similarity to each subtype 200
Identify the HIV subtype . 201

24 Sequence trees 203
Measuring sequence distance . 203
Lower triangular distance matrices . 205
Generate a distance matrix . 206
Clustering . 207
Perform the clustering . 208

25 Finding genes 213
Finding Open Reading Frames . 214
Translation of open reading frames . 219
Put everything together . 219

26 Genome assembly 221
Read and analyze the sequencing reads . 223
Compute overlaps between reads . 225
Find the correct order of reads . 229
Reconstruct the genomic sequence . 231

III Web exercises 233

27 GWAS candidates 235
Browsing SNPs from a GWAS . 236
Exploring a genomic region . 237
Gathering information about genes . 239
Exploring tissue expression . 240
Hypotheses and Discussion . 241

28 CCR5-delta32 243
Human Immunodeficiency Virus targets immune cells 243
Can specific gene variants provide resistance to HIV? 244
Aim . 245
Preparation . 245
Aligning protein sequences . 247
Searching a database using Blast . 248
GenBank sequence format . 250

vi

Putting it all together . 251
Project files . 252

29 MRSA 253
Sequence Retrieval . 254
Database Searching using BLAST . 255
Multiple Sequence Alignment using ClustalW 258
Discussion . 259
Additional tools . 260

30 Aardvark? 261
Build a FASTA file . 263
One-click analysis . 264
Explore phylogeny - part 3 . 268
Food for thought . 269
Project files . 269

31 Plasmid ORFs 271
Project files . 273

32 Read mapping 275
32.1 HIFI reads . 275
Project files . 280

33 Neural networks 281

IV Supplementary 285

Project files 287

Python projects 289
Web exercises . 289

Lecture recordings 291
Week 1 . 291
Week 2 . 291
Week 3 . 291
Week 4 . 292
Week 5 . 292
Week 6 . 292
Week 7 . 293
Week 8 . 293
Week 9 . 293
Week 10 . 293

vii

Week 11 . 294
Week 12 . 294
Week 13 . 294

Lecture slides 295

Databases and resources 297
Knowledege data bases . 298
Do it yourself: . 298

Assignments 299

Exam info 301
Download the course homepage and Python documentation 301
Example of exam assignment . 301
About the written exam . 301
Filer til brug ved eksamen . 301
Sådan løser du programmeringsopgaverne . 302
Sådan løser du bioinformatikopgaverne . 303
Sådan afleverer du din eksamensopgave i Wiseflow 303

viii

Welcome

Download the HTML course website for offline viewing at the exam (unzip once
downloaded and double-click index.html).

Download the HTML Python documentation for offline viewing at the exam (unzip
once downloaded and double-click index.html).

This is the homepage for the AU course Bioinformatics and programming (Bioinfor-
matik og programmering). You will find all course content here. The Brightspace course
page is only used for communication, and assignments.

Course description

After the course, the participants will have basic knowledge of computer methods and
applications for analyzing biological sequence data and insight into principles and tech-
niques for constructing simple programs. Participants will acquire practical experience
with analyzing problems in bioinformatics and related fields and implementing pro-
grams to solve such problems using the Python programming language.

The participants must, at the end of the course, be able to:

• Apply fundamental constructs of a programming language.
• Analyse data and construct data structures for the representation of data.
• Analyse simple computational problems and construct programs for their solu-

tion.
• Describe and relate essential methods in bioinformatics analysis.
• Apply bioinformatics software to biological data.
• Judge the reliability of results obtained using Bioinformatics software.

Course contents

The course introduces programming and its practical applications in bioinformatics.
The course also outlines and discusses bioinformatics algorithms, and the most com-
mon tools for bioinformatics analysis of sequence data are presented and demo nstrated.
The participant will acquire and train basic programming skills during the first seven

1

https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=%7BorgUnitId%7D&type=coursefile&fileId=course_page_html.zip
https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=%7BorgUnitId%7D&type=coursefile&fileId=python-3.9.21-docs-html.zip

weeks. The last seven weeks introduce key topics in bioinformatics, focusing on apply-
ing bioinformatical software and developing programming skills. Subjects for lectures
and exercises include bioinformatics databases, sequence alignment, genome annota-
tion, sequence evolution, and phylogenetic analysis.

2

Curriculum

The curriculum for programming is the lecture notes on these pages (a PDF version is
available by clicking the PDF icon in the top left corner).

Bioinformatics is a rapidly developing field, so textbooks often have parts that need up-
dating. So, in this course, the curriculum for bioinformatics is put together from several
sources. We use the best excerpts from the textbooks Understanding Bioinformatics by
Jeremy Baum and Marketa J. Zvelebil, Biological Sequence Analysis by Richard Durbin
et al., and Exploring Bioinformatics by Caroline St. Clair and Jonathan E. Visick. I have
collected the sections from each textbook in separate compendia. You will also be read-
ing short, up-to-date publications on selected topics in bioinformatics.

Below are links to material covering the bioinformatics topics we treat in the course. In
the weekly notes, you can see what you need to read to prepare for each lecture. You
can also find any curriculum related to the exercises in the weekly note.

Compendia you can download here:

• Compendium of selections from Understanding Bioinformatics
• Compendium of selections from Biological Sequence Analysis
• Compendium of selections from Exploring Bioinformatics

Links to material you need to download yourself (you may need to be on campus or
use your student VPN to download from publisher websites):

• Chapter 11: Genome-Wide Association Studies
• Benefits and limitations of genome-wide association studies
• The Theory and Practice of Genome Sequence Assembly
• Alignment methods: strategies, challenges, benchmarking, and comparative

overview
• Bioinformatics explained: BLAST (CLCbio)
• Automatic generation of gene finders for Eukaryotic species

Curriculum on webpages (not PDF format):

Using neural nets to recognize handwritten digits (if you have trouble accessing the
page, download this zip file with the HTML content, unzip it, and view it locally).

3

https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=145685&type=coursefile&fileId=UnderstandingBioinformatics.pdf
https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=145685&type=coursefile&fileId=BiologicalSequenceAnalysis.pdf
https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=145685&type=coursefile&fileId=ExploringBioinformatics.pdf
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822
https://www.nature.com/articles/s41576-019-0127-1
https://www.annualreviews.org/doi/10.1146/annurev-genom-090314-050032
https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=145685&type=coursefile&fileId=AlignmentMethods.pdf
https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=145685&type=coursefile&fileId=AlignmentMethods.pdf
https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=145685&type=coursefile&fileId=CLC_Bioinformatics_explained_BLAST.pdf
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-7-263
https://neuralnetworksanddeeplearning.com/chap1.html
https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=145685&type=coursefile&fileId=Neural+networks.zip

Schedule

Week 1

Reading:

• Lecture notes: chapter Chapter 1
• Lecture notes: chapter Chapter 2
• Lecture notes: chapter Chapter 3
• Lecture notes: chapter Chapter 4
• Lecture notes: chapter Chapter 5
• Lecture notes: chapter Chapter 6
• Lecture notes: chapter Chapter 7

Make sure you have installed Python and VScode for the first lecture.

Lectures:

• In the first lecture, I will outline how the course is organized and how you will
get the most out of your efforts in learning programming.

• In the first lecture, I will also talk about how a Python program works and about
values, math, and logic.

• In the second lecture, I will talk about variables, operators, substitution, and re-
duction.

Exercises:

If you have yet to do so at home, you will install Python and the text editor. To do
this, follow the instructions in Chapter 2. Then, start doing the exercises in chapter
Chapter 4, chapter Chapter 5, and chapter Chapter 6. You will also have time to do
these exercises in the TA session of week two, so go slow. It is important to properly
absorb the basic concepts at the beginning of the course; otherwise, it will become too
difficult later on. Have a look

And make sure to familiarize yourself with the Myiagi game and the print-steps tool
described in chapter Chapter 7. These are useful companions in the course.

5

Week 2

Reading:

• Lecture notes: chapter Chapter 8
• Lecture notes: chapter Chapter 9

I will cover chapters 8-9 in the lecture notes.

Lectures:

• In the first lecture, I will talk about how to use logic to control which statements
in your program that get executed.

• In the first lecture, I will also talk about how you can efficiently organize your
code using functions.

• In the second lecture, I will talk more about functions.

Exercises:

The topics for this week’s exercises are statements, variables, operators, expressions,
substitution, reduction, and logic. You will work on the rest of the exercises in chapter
Chapter 4, chapter Chapter 5, chapter Chapter 6, and chapter Chapter 7. Do what you
can at home and do the rest at the TA session.

Week 3

Reading:

• Lecture notes: chapter Chapter 10
• Lecture notes: chapter Chapter 11
• Lecture notes: chapter Chapter 12
• Lecture notes: chapter Chapter 13

Lectures:

• In the first lecture, I will talk about objects and methods.
• In the first lecture, I will also talk about lists.
• In the second lecture, I will talk about dictionaries and a bit about tuples.

6

Exercises:

The topics for this week’s exercises are if, else, logic, and functions. You are meant to
complete all the exercises in chapter Chapter 8 and chapter Chapter 9. Do what you
can at home and do the rest at the TA session.

Week 4

Reading:

• Lecture notes: chapter Chapter 14
• Lecture notes: chapter Chapter 15

Lectures:

• In the first lecture, I will talk about iteration and lists.
• In the second lecture, I will talk about how your code can interact with files on

your computer.

Exercises:

Note

Only MO and Bio classes attend the exercises this week. MM classes do not. The
exercise is repeated next week for the MM classes to attend*

The topics for this week are objects, methods, strings, lists, tuples, and dictionaries. You
are meant to complete all the exercises in chapters Chapter 10, Chapter 11, Chapter 12,
and Chapter 13. Do what you can at home and do the rest at the TA session.

Week 5

Reading:

• Lecture notes: chapter Chapter 16
• Lecture notes: chapter Chapter 17
• Lecture notes: chapter Chapter 18
• Chapter 11: Genomewide Association Studies
• Benefits and limitations of genomewide association studies

7

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822
https://www.nature.com/articles/s41576-019-0127-1

Lectures:

• In the first lecture, I will talk about databases, genotyping arrays, and
genomewide association studies (GWAS).

• In the first lecture, I will also talk about building simple data strutures in Python.
• In the second lecture, I will talk about how to use recursion in Python.

Exercises:

Note

Only MM classes attend the exercises this week. MO and Bio classes do not. The
exercise is repeated from last week*.

The topics for this week are iteration and data structures. You are meant to complete all
the exercises in chapter Chapter 14 and chapter Chapter 15.

Week 6

Reading:

• Lecture notes: chapter Chapter 19
• Understanding Bioinformatics 127-141

Lectures:

• In the first lecture, I will talk about global pairwise alignment In the first lecture
• In the first lecture, I will also talk about the weekly programming project.
• In the second lecture, I will talk about local pairwise alignment and more realistic

gap scoring.

Exercises:

• The programming project described in chapter Chapter 19.

From the project files page, you can download the files you need for programming
projects. There will be lots of work, so do what you can at home and do the rest at the
TA session.

8

supplementary/project_files.qmd

Important

Chapter Chapter 19 is a mandatory assignment. The deadline for handing it in
(on Brightspace) is the night before your exercise class in week 41.

Week 7

Reading:

• Lecture notes: chapter Chapter 20
• Understanding Bioinformatics: 117-127
• Alignment methods: strategies, challenges, benchmarking, and comparative

overview (don’t do the exercises).

Lectures:

• In the first lecture, I will talk about protein substitution matrices and how to score
protein alignments. - In the first lecture, I will also talk Python classes and the
weekly programming project.

• In the second lecture, I will talk about multiple alignment.

Exercises:

• The web exercise: GWAS candidates
• The programming project described in chapter Chapter 20 (not a mandatory as-

signment).

From the project files page, you can download the files you need for both programming
projects and web exercises. There will be lots of work, so do what you can at home and
do the rest at the TA session.

Week 8

Reading:

• Lecture notes: chapter Chapter 21
• Bioinformatics Explained: BLAST
• Biological Sequence Analysis pp. 192-197

9

chapters/web/gwas_databases/index.qmd
supplementary/project_files.qmd

Lectures:

• In the first lecture, I will talk about how to search for matches in a sequence
database and how to asses alignment significance.

• In the first lecture, I will also talk about programming topics and the weekly pro-
gramming project.

• In the second lecture, I will talk about models of DNA evolution and how to
measure evolutionary distance between sequences.

Exercises:

• The web exercise: CCR5-delta32
• The programming project described in chapter Chapter 21 (not a mandatory as-

signment).

From the project files page, you can download the files you need for both programming
projects and web exercises. There will be lots of work, so do what you can at home and
do the rest at the TA session.

Week 9

Reading:

• Lecture notes: chapter Chapter 22
• Biological Sequence Analysis pp. 165-179

Lectures:

• In the first lecture, I will talk about methods for sequence clustering.
• In the first lecture, I will also talk about the programming project.
• In the second lecture, I will talk about bioinformatics code libraries for Python,

such as BioPython, and the Master in Bioinformatics that we offer at the Bioinfor-
matics Centre.

Exercises:

• The web exercise: MRSA
• The programming project described in chapter Chapter 22 (not a mandatory as-

signment).

From the project files page, you can download the files you need for both programming
projects and web exercises. There will be lots of work, so do what you can at home and
do the rest at the TA session.

10

chapters/web/ccr5_pwalign/index.qmd
supplementary/project_files.qmd
chapters/web/mrsa_blast_multalign/index.qmd
supplementary/project_files.qmd

Week 10

Reading:

• Lecture notes: chapter Chapter 23
• Biological Sequence Analysis pp. 192-202

Lectures:

• In the first lecture, I will talk about phylogenetic trees.
• In the first lecture, I will also talk about Python topics and the weekly program-

ming project.
• In the second lecture, I will talk about gene prediction in prokaryotes.

Exercises:

• The web exercise: Aardvark?
• The programming project described in chapter Chapter 23.

From the project files page, you can download the files you need for both programming
projects and web exercises. There will be lots of work, so do what you can at home and
do the rest at the TA session.

Important

Chapter Chapter 23 is a mandatory assignment. The deadline for handing it in is
the night before your exercise class in week 46.

Week 11

Reading:

• Lecture notes: chapter Chapter 24
• Biological Sequence Analysis pp. 46-66

Lectures:

• In the first lecture, I will talk about hidden Markov models (HMMs).
• In the first lecture, I will also talk about python topics and the weekly program-

ming project.
• In the second lecture, I will talk about more about HMMs

11

chapters/web/aardwark_seqdist/index.qmd
supplementary/project_files.qmd

Exercises:

• The programming project described in chapter Chapter 24 (not a mandatory as-
signment).

From the project files page, you can download the files you need for both programming
projects and web exercises. There will be lots of work, so do what you can at home and
do the rest at the TA session.

Week 12

Reading:

• Lecture notes: chapter Chapter 25
• Understanding Bioinformatics pp. 438-448
• Automatic generation of gene finders for Eukaryotic species
• The Theory and Practice of Genome Sequence Assembly

Lectures

• In the first lecture, I will talk about applications of hidden Markov models gene
finding and protein annotation.

• In the first lecture, I will also talk about Python topics and the weekly program-
ming project.

• In the second lecture, I will talk genome assembly.

Exercises:

• The web exercise: Plasmid ORFs
• The programming project described in chapter Chapter 25 (not a mandatory as-

signment).

From the project files page, you can download the files you need for both programming
projects and web exercises. There will be lots of work, so do what you can at home and
do the rest at the TA session.

Week 13

Reading:

• Lecture notes: chapter Chapter 26
• Understanding Bioinformatics pp. 494-496
• Exploring Bioinformatics pp. 242-248

12

supplementary/project_files.qmd
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-7-263
https://www.annualreviews.org/doi/10.1146/annurev-genom-090314-050032
chapters/web/orf_finding/index.qmd
supplementary/project_files.qmd

Lectures:

• In the first lecture, I will talk about neural networks
• In the first lecture, I will also talk about the programming project.
• In the second lecture, I will talk about applications of HMMs RNA secondary

structure prediction.

Exercises:

• The web exercise: Read mapping
• The programming project described in chapter Chapter 26 (not a mandatory as-

signment).

From the project files page, you can download the files you need for both programming
projects and web exercises. There will be lots of work, so do what you can at home and
do the rest at the TA session.

Week 14

Reading:

• None this week.

Lectures:

• In the first lecture, I will talk about python and algorithms. You will also hear a
guest talk by about bioinformatics outside the class room.

• In the last lecture, we will evaluate the course and review the exam’s practicalities.

Exercises:

• The web exercise: Neural networks

From the project files page, you can download the files you need for both programming
projects and web exercises. There will be lots of work, so do what you can at home and
do the rest at the TA session.

13

chapters/web/long_reads/index.qmd
supplementary/project_files.qmd
chapters/web/neural_networks/index.qmd
supplementary/project_files.qmd

Part I

Learning Python

15

1 Preface

These lecture notes are inspired by the many books and resources I have used in this
course. “Learning Python the Hard Way” and “How to Think Like a Computer Sci-
entist” have inspired my own notes on programming. These implement the following
ideas, which I think best support learning in an introduction to programming:

1. Each topic and concept is introduced so that it can be applied immediately on top
of what you know.

2. The introduction of each topic covers only the most basic facts and rules required
to learn the rest through practical exercises.

I would like to improve these notes as much as I can. If you find errors in exercises,
poorly explained concepts, redundant information, missing items, or exercises that
would work better in a different order, please let me know. You can do this by reporting
an issue.

Happy coding, Kasper Munch

17

https://github.com/munch-group/bioinformatics/issues
https://github.com/munch-group/bioinformatics/issues

2 Before you begin

This chapter serves to get the practicalities out of the way so you can start programming. Read
the whole chapter once carefully before you install anything

Install Python

In this course, we use the Python programming language and need the Python pro-
gram to run the code we will write. We will use a Python distribution called Anaconda.
Anaconda is the easiest way to install Python on Windows, Mac OS (Mac), and Linux.
To install Anaconda, head to this site. Click “Download”. When the download has
been completed, double-click the file you just downloaded and follow the instructions
on the screen. You must accept all the suggested installation settings.

The text editor

You will also need a text editor. A text editor is where you write your Python code. For
this course, we will use Visual Studio Code - or VScode for short. You can download it
from this page. If you open VScode, you should see something like Figure 2.1. You
may wonder why we cannot use Word to create and edit files with programming code.
The reason is that a text editor made for programming, such as VScode, only saves
the actual characters you type. So, unlike Word, it does not silently save all kinds of
formatting, like margins, boldface text, headers, etc. With VScode, what you type is
exactly in the file when you save it. In addition, where Word is made for prose, VScode
is made for programming and has many features that will make your programming life
easier.

The terminal

The last thing you need is a tool to make Python run the programs you write. Fortu-
nately, that is already installed. On OSX, this is an application called Terminal. You can
find it by typing “Terminal” in Spotlight Search. When you start, you will see some-
thing like Figure 2.2. You may be presented with the following text:

19

https://www.anaconda.com/products/individual
https://code.visualstudio.com/download

Figure 2.1: Visual Studio Code (VScode)

The default interactive shell is now zsh.
To update your account to use zsh, please run `chsh -s /bin/zsh`.
For more details, please visit https://support.apple.com/kb/HT208050.

Do not update your account after you install Anaconda (see below). If you do, Terminal
will not be able to find the Anaconda Python (If you did so by mistake, you change
back using this command: chsh -s /bin/bash.

On Windows, the tool you need is called the Anaconda Powershell Prompt, which
was installed along with Anaconda Python. You should be able to find it from the
Start menu. Ensure you open Anaconda Powershell Prompt and not Anaconda Powershell
Prompt. They are different programs. If you open Anaconda Powershell Prompt, you
should see something like Figure 2.3.

What is Anaconda Powershell Prompt and this Terminal thing? Both programs are what
we call terminal emulators. They are used to run other programs, like the ones you will
write yourself. I will informally refer to both Terminal and Anaconda Powershell Prompt
as “the terminal.” So if I write something like “open the terminal,” you should open
Anaconda Powershell Prompt if you are running Windows and the Terminal application if
you are running OS X.

The terminal is a very useful tool. However, to use it, you need to know a few basics.
First of all, a terminal lets you execute commands on your computer. You type the

20

Figure 2.2: The Terminal app on Mac

Figure 2.3: Anaconda Powershell Prompt app on Windows

21

command you want and then hit enter. The place where you type is called a prompt
(or command prompt), and it may look a little different depending on which terminal
emulator you use. In this book, we represent the prompt with the character $. So, a
command in the examples below is the line of text to the left of the $. When you open
the terminal, you’ll be redirected to a folder. You can see which folder you are in by
typing pwd, and then press Enter on the keyboard. When you press Enter, you tell the
terminal to execute your written command. In this case, the command you typed tells
you the path to the folder we are in. If I do it, I get:

Listing 2.1 Terminal

$ pwd
/Users/kasper/programming

If I had been on a Windows machine, it would have looked something like this:

Listing 2.2 Terminal

$ cd
C:\Users\kasper\programming

So, right now, I am in the programming folder. /Users/kasper/programming is the
folder’s path or “full address” with dashes (or backslashes on Windows) separating
nested folders. So programming is a subfolder of kasper, a subfolder of Users. That way,
you know which folder you are in and where that folder is. Let us see what is in this
folder. You can use the ls command (l as in Lima and s as in Sierra). When I do that
and press Enter I get the following:

Listing 2.3 Terminal

$ ls
notes projects

There seem to be two other folders, one called notes and another called projects. If
you are curious about what is inside the notes folder, you can “walk” into the folder
with the cd command. To use this command, you must specify which folder you want
to walk into (in this case, notes). We do this by typing cd, then a space, and then the
folder’s name. When I press Enter I get the following:

It seems that nothing really happened, but if I run the pwd command now to see which
folder I am in, I get the following:

22

Listing 2.4 Terminal

$ cd notes
$

Listing 2.5 Terminal

$ pwd
/Users/kasper/programming/notes

Just to keep track of what is happening: before we ran the cd command, we
were in the directory /Users/kasper/programming folder, and now we’re in
/Users/kasper/programming/notes. This means that we can now use the ls com-
mand to see what is in the notes folder:

Listing 2.6 Terminal

$ ls
$

Again, it seems like nothing happened. Well, ls and dir do not show anything if the
folder we are in is empty. So notes must be empty. Let us go back to where we came
from. To walk “back” or “up” to /Users/kasper/programming, we again use the cd
command, but we do not need to name a folder this time. Instead, we use the special
name .. to say that we wish to go to the parent folder called programming, i.e., the
folder we just came from:

When we run the pwd command, we see that we are back where we started. Let us see
if the two folders are still there:

They are!

Hopefully, you can now navigate your folders and see what is in them. You will need
this later to access the folders with the code you write for the exercises and projects
during the course.

Action OSX

Show current folder pwd
List folder content ls
Go to subfolder “notes” cd notes
Go to parent folder cd ..

23

Listing 2.7 Terminal

$ cd ..
$ pwd
/Users/kasper/programming

Listing 2.8 Terminal

$ ls
notes projects

Create a conda environment for the course

In bioinformatics, we install packages and programs to use them in our analyses and
pipelines. Sometimes, however, the packages you need for one project conflict with the
ones you need for other projects you work on in parallel. Such conflicts seem like an
unsolvable problem. If only you could create a small insulated world for each project
that only contained the packages you needed for that particular project. If each project
lived in an isolated world, then there would be no such version conflicts. Fortunately,
a tool lets you do just that, and its name is Conda.

“
”

Conda is an open-source environment management system for installing
multiple versions of software packages and their dependencies and easily
switching between them.

The small worlds that Conda creates are called “environments”. You can create as
many environments as you like and then use each for a separate bioinformatics project,
a course, a bachelor project, or whatever you want to insulate from everything else.
Conda also downloads and installs the packages for you, ensuring that the software
packages you install in each environment are compatible. It even makes sure that pack-
ages needed by packages (dependencies) are also installed. Conda is truly awesome.

When you install Anaconda, Conda makes a single base environment for you. It is
called “base”, and this is why it says “(base)” on your terminal.

In this course, you must install programs and Python libraries that could conflict with
the packages you need for other courses or future projects. So, we will create an iso-
lated Conda environment for Bioinformatics and Programming to avoid such conflicts.
Conda is a program you run from the command line, like python or cd. So open your
terminal (i.e., the “Terminal” program if you are on a Mac and the “Anaconda Power-
shell Prompt” program if you are on Windows). Now copy/paste these command lines
into the terminal one at a time and press return (enter) after pasting each one:

24

Listing 2.9 Terminal

conda create -y -n bioprog
conda activate bioprog
conda config --env --add channels conda-forge
conda config --env --add channels sepandhaghighi
conda config --env --add channels kaspermunch
conda install -y 'python=3.9' pygments textual rich art bp-help

This command runs the Conda program and tells it to create a new environment named
“bioprog” and install the packages we need in that environment. Once you hit enter on
the last command, Conda works for some time and then writes a long list of packages
in your terminal. These are all the packages and dependencies required in versions that
fit together.

Notice how the command prompt changed from “(base)” to “(bioprog)” to show that
you are now in the bioprog environment. It looks like nothing has changed, but now
you can access unavailable terminal commands in the base environment. You’ll be able
to learn about these later. Try this command:

conda deactivate

Notice how it again says “(base)” on your command prompt. That is because you are
back in your base environment. When you start a new terminal window, you must run
conda activate bioprog to activate the environment and access the course tools.

You are all set

Well done! You are all set to start the course. Have a cup of coffee, and look forward to
your first program. While you sip your coffee, I need you to take an oath (one of three
you will take during this course). Raise your right hand! (put the coffee on your left).

“
”

Oath 1: I swear never to copy and paste code examples from this book
into my text editor. I will always read the examples and then type them
into my editor.

This serves three purposes (as if one was not enough):

1. You will be fully aware of every bit of each example.
2. You will learn to write code correctly and without omissions and mistakes.

25

3. You will get Python “into your fingers”. It sounds silly, but it will get into your
fingers.

26

3 Appendix: Conda environment for BSF

This chapter is only relevant to students following both Bioinformatics and Programming and
Biomolekylær Struktur og Funktion.

In bioinformatics, we install packages and programs to use them in our analyses and
pipelines. Sometimes, however, the packages you need for one project conflict with
the ones you need for other projects you work on in parallel. Such conflicts seem like
an unsolvable problem. Would it not be fantastic if you could create a small insulated
world for each project, which then only contained the packages you needed for that
particular project? If each project had its own isolated world, then there would be no
such version conflicts. Fortunately, a tool lets you do just that, and its name is Conda.

“
”

Conda is an open-source package management and environment man-
agement system for installing multiple versions of software packages and
their dependencies and easily switching between them.

The small worlds that Conda creates are called “environments.” You can create as
many environments as you like and then use each for a separate bioinformatics project,
a course, a bachelor project, or whatever you want to insulate from everything else.
Conda also downloads and installs the packages for you, ensuring that the software
packages you install in each environment are compatible. It even makes sure that pack-
ages needed by packages (dependencies) are also installed. Conda is truly awesome.

Creating an environment for BSF

When you install Anaconda, Conda makes a single base environment for you. It is
called “base,” and this is why it says “(base)” on your terminal.

Many of you take the “Biomolecular Structure and Function” (let us call that BSF) along-
side this course. In BSF, you must install programs (e.g., PyMol) that may conflict with
the packages you need for Bioinformatics and Programming. So, we will create iso-
lated Conda environments for each course to avoid such conflicts. Conda is a program
you run from the command line, like python or cd. So open your terminal (i.e., the
“Terminal” program if you are on a Mac and the “Anaconda Powershell Prompt” pro-
gram if you are on Windows). You need two different commands depending on your
computer’s chipset.

27

If you have a Mac, create a conda environment for BSF by copying/pasting the com-
mand line below into the terminal. Before you press return (enter), check that the pasted
command looks the same. Sometimes, a space between words needs to be included.
Now press return.

Listing 3.1 Terminal

conda create -y -n BSF --platform osx-64 -c conda-forge -c anaconda -c schrodinger pyqt pymol-bundle=3.1 python=3.12 vtk-m=1.8

If you have a Windows computer, create a conda environment for BSF by copy-
ing/pasting the command line below into the terminal. Before you press return (enter),
check that the pasted command looks the same. Sometimes, a space between words
needs to be included. Now press return.

Listing 3.2 Terminal

conda create -y -n BSF --platform win-64 -c conda-forge -c anaconda -c schrodinger pyqt pymol-bundle=3.1 python=3.12 vtk-m=1.8

Notice how the command prompt changed from “(base)” to “(bioprog)” to show that
you are now in the bioprog environment. It looks like nothing has changed, but now
you have access to terminal commands that are not available in the base environment.
You’ll be able to learn about these later. Try this command:

Listing 3.3 Terminal

conda deactivate

Notice how it again says “(base)” on your command prompt. That is because you are
back in your base environment. Every time you start a new terminal window, you will
need to run conda activate BSF to activate the BSF environment and access Pymol. Try
it out:

and press enter. Voila, you are now back in the BSF environment. Notice how the
command prompt changed from “(base)” to “(BSF)” to show that you are now in the
BSF environment. To run the PyMol that you installed in this environment, just type

and hit enter.

Now try to close PyMol. Then go back to your terminal and type:

Notice how it now again says “(base)” on your command prompt. That is because you
are back in your base environment. Try to type pymol (and hit enter). Your terminal
will tell you it could not find anything called pymol. This is the way it should be. That
is because PyMols is installed in the BSF environment, not in the base environment. It

28

Listing 3.4 Terminal

conda activate BSF

Listing 3.5 Terminal

pymol

illustrates how the base environment is entirely separate from the BSF environment you
just made.

Starting PyMol

From now on, you can start PyMol by typing these commands into the terminal (Ana-
conda Powershell Prompt on Windows):

(hit enter)

(hit enter)

29

Listing 3.6 Terminal

conda deactivate

Listing 3.7 Terminal

conda activate BSF

Listing 3.8 Terminal

pymol

30

4 Writing a program

Let’s get you started. . .

Hello World

Dive in and make your first program. Create a new file in your editor (VScode) and
save it as hello.py. The .py suffix tells your editor that this file contains Python code.
As you will see, this makes your life a whole lot easier. Such a file with Python code is
usually called a script, but we can also call it a program.

Now write exactly this in the file (hello.py):

print("Hello world")

Your editor will color your code differently, but that is unimportant. Save your file with
the added code and have your first program! Of course, there is not much point in
having a program if it just sits there on your computer. To run your program, do the
following:

1. Open the terminal and navigate to the folder (directory) where you saved
hello.py. Use the cd command to do so. If you do not remember how, reread the
previous chapter.

2. Type python hello.py in the terminal and hit Enter.

You should see something like Figure 4.1.

This is where you shout, “It’s alive!” toss your head back, and do the insane scientist
laugh.

Okay, what just happened? You wrote a program by creating a file in which you wrote
one line of code. You then ran the program using Python, and it wrote (printed) Hello
world in the terminal. Do not worry about the parentheses and quotes for now; just
enjoy your new life as a programmer.

Maybe you wonder why we write print and not write or something else. That goes
back to when computers were enormous, clunky things with no screens attached. They
could only interact with the user by printing things on an actual physical paper printer.

31

Figure 4.1: Hello world

32

Back then, the output you now see on the screen was printed onto a piece of paper that
the programmer could then look at. These days, print shows up in the terminal, but
the story should help you remember that print spits text out of your program just like a
printer.

Now try to add another line of code like this:

print("Hello world")
print("I am your first program")

Save the file and run it again by typing python hello.py into your terminal and hitting
Enter.

You should see this:

Hello world
I am your first program

Now your program prints Hello world and then prints I am your first program. The
then-part is important. That is how a Python program works. Python (the python you
write in front of hello.py) reads your hello.py file and then executes the code, one
line after another, until it reaches the end of the file. This is essential, so reread from
the beginning of the paragraph. Now, read it once more. It may seem trivial, but it is
fundamental to remember that this is how Python runs your code. So here is Oath 2:

“
”

Oath 2: I swear to always remember that each line of code in my script is
executed one after another, starting from the first line and ending at the
last line.

When you write Python code, you always follow this workflow:

1. Change the code in the file.
2. Save the file.
3. Execute the code in the file using the terminal.
4. Start over.

Make sure you get the hang of this in the following exercises.

Important: The examples and exercises in this course are designed to work if you exe-
cute your scripts from their stored folder. So, you’ll need to go ahead and navigate the
relevant folder before you’re done with your script. If your script is called hello.py,
you must always execute it precisely like this: python hello.py. If you do it any other
way, you may use a different Python version than you think. On some computers, it is
possible to type hello.py without python in front of it. Don’t do that. Do not “drag” the
script file into the Terminal either. In VScode, you can press a small play icon on the top

33

right to execute the code. Don’t do that either. There are many other things you should
not do, but you get the drift.

Exercise 4-1

Try swapping the two lines of code in the file and rerun the program. What does it print
now?

Exercise 4-2

Try to make the program print a greeting to yourself. Something like this:

Hello Sarah!

– if your name is Sarah, of course.

Exercise 4-3

Add more lines of code to your program to make it print something else. Can you make
your program print the same thing ten times?

Error Messages

Did you get everything right with your first program, or did you get error messages
when executing your code with python? Maybe you wrote the following code (adding
an extra closing parenthesis):

print("Hello world"))

– and then got an error like this:

File "hello.py", line 1
print('Hello world'))

ˆ
SyntaxError: invalid syntax

34

This is Python’s way of telling you that the hello.py script has an error in line 1. If you
write something that does not conform to the proper syntax for Python code, you will
get a SyntaxError. Python will do its best to figure out where the problem is and point
to it with a ˆ character.

You will see many error messages in your new life as a programmer. So you must
practice reading them. At first, they will be hard to decipher, but once you get used
to them, they will help you quickly identify where the problem is. If there is an error
message that you do not understand, the internet is your friend. Just paste the error
message into Google’s search field, and you will see that you are not the only one on
the internet getting started on Python programming. It is okay if you do not know how
to fix the problem right now, but it is essential to remember that these error messages
are Python’s way of helping you understand what you did wrong.

Exercise 4-4

Try to break your new shiny program and make it produce an error message when you
run it. An easy way of doing this is to remove or change random characters from the
program. If you run this (with a missing end-parenthesis:

print("Hello world"
print("I am your first program")

You will get this error:

File "hello.py", line 2
print("I am your first program")

^
SyntaxError: invalid syntax

The ˆ character tells you when your code stops making sense to Python. Sometimes,
that is a bit after where you made your mistake.

Try to make other kinds of errors. Which error messages do you see? Do you always
see the same error message, or are they different? Try googling the error messages you
get. Can you figure out why the change you made broke the program? How many
other error messages can you produce?

35

Strings

In programs, text values are called strings, and you have already used strings a lot in
your first program. A string is simply a text, but we call it a string because it is a “string
of characters”. In Python, we represent a string like this:

"this is a string"

or like this:

'Hello world'

That is, we take the text we wish to use as our value and put quotes around it. We can
use double quotes (the first example) or single quotes (the second example). We can
mix them like this:

print('this is "some text" with a quote')

– but not like this:

print("this is a broken string')

Can you see why and how handy it is to have single and double quotes? If we did not
have both, we could not have text with quotes. However, you must use the same kind
of quotes at each end of the string. Running the latter example gives an error message
telling you that Python cannot find the quote that was supposed to end the string:

File "broken.py", line 1
print("this is a broken string')

^
SyntaxError: EOL while scanning string literal

It is Python’s way of saying, ” I reached the end of the line (EOL) without finding a
matching end quote.”

36

Comments

You have already learned that Python reads and executes one line of code at a time until
your program has no more lines of code.

However, we can make a line invisible to Python by putting a # symbol in front of it,
like this:

print("Hello world")
print("Greetings from your first program")

When you do that, Python does not read that line. It is not part of the program. Rerun
the program. You will notice that now only the second line is part of your program:

$ python hello.py
Greetings from your first program

This is useful in two ways:

1. It lets you disable certain lines of your code by keeping Python from reading them.
For example, see what happens if that line of code is not executed to understand
how your program works.

2. It allows you to write notes in your Python code to help you remember how it
works.

Lines with a # in front are called “comments” because we usually use them to write
comments about our code. If you ask for help with some problem, you will often hear
your instructor say: try to “comment out” in line two. When your instructor says that, it
simply means that you should add a # in front of line two to see what then happens.

Exercise 4-5

What happens if I put a # in the middle of a line of code? Try it out!

Exercise 4-6

Try this:

Note to self: the lines below print stuff
print("Hello world")
print("Greetings from your first program")

37

Exercise 4-7

Try this:

print("Hello world") # actually, everything after a # is ignored
print("Greetings from your first program")

What did you learn? Which parts of each line are considered part of the program?

Exercise 4-8

Now try this:

print("Hello # world")
print("Greetings from your first program")

What did you learn about # characters in strings? #### Exercise Try this:

print("Hello world"#)
print("Greetings from your first program")

Did you expect this to work? Why? Why not? What error message did you get?

38

5 Dealing with values

This chapter is about values and variables, the two most central concepts in programming.

Math

Much programming is done to compute stuff. In Python, the usual math operations are
done using these arithmetic operators:

Operator Operation

+ plus
- minus
/ division
// integer division
* multiplication
** exponentiation
% modulo (remainder)

You are probably quite familiar with these - except perhaps for integer division, expo-
nentiation, and modulo. Let us take some of the operators for a spin. Remember to
carefully write the whole thing in an empty file in VScode. Do not copy-paste. Then
save the file as mathandlogic.py and run it from the terminal. Do not call your file
math.py. It may bite you later. Just trust me on that one.

print("Four times two is", 4 * 2)

Notice how you can print more than one thing at a time if you put commas between
the values you want to print? We can group computations using parentheses, just like
in normal math. Try this:

print("10 / (2 + 3) is", 10 / (2 + 3))
print("(10 / 2) + 3 is", (10 / 2) + 3)

39

In addition to the regular math operators, there are a few extra operators that we call
comparison operators because they are used to compare two values, e.g., two numbers.

Operator Operation

< less-than
> greater-than
<= less-than-or-equal
>= greater-than-or-equal
== equal
!= not equal

Try this:

print("Is 5 greater than -2?", 5 > -2)
print("Is 5 greater or equal to -2?", 5 >= -2)
print("Is 5 less or equal to -2?", 5 <= -2)
print("Is 5 less than 7 - 2?", 5 < 7 - 2)
print("Is 5 equal to 7 - 2?", 5 == 7 - 2)

As you may have noticed, running this code and comparing things using these opera-
tors, we always produce either True or False. E.g., the following

print(5 < 7)

prints the value True because 5 is smaller than 7. True and False are special values in
Python that we can use (and print if we like) just like any other Python value:

print(True)
print(False)

Exercise 5-1

Try to write and run the code below. Compare each line to what is printed when you
run the code. Make sure you understand why.

print("I have", 25 + 30 / 6, "of something")
print("I have", 100 - 25 * 3 % 4, "of something else")

print("Is it true that 3 + 2 < 5 - 7?")
print(3 + 2.1 < 5.4 - 7)

40

print("3 + 2.1 is", 3 + 2.1)
print("5.4 - 7 is", 5.4 - 7)

print("Oh, that's why it's False.")

Exercise 5-2

An additional comparison operator even tests if something is a part of something else.
That operator is called in. One use of it is to test if one string is part of another string.
Try this to figure out how it works:

print("Hell" in "Hello world")
print("Hello world" in "Hello world")
print("Hello world" in "Hell")
print("lo wo" in "Hello world")
print("Artichoke" in "Hello world")

Exercise 5-3

Say the supermarket has chocolate bars for 7 kr. Write a small Python program (in a
file called chocolate.py) that prints how many chocolate bars you can get for your 30 kr.
You should run it like this;

For example, it could output something like this:

$ python chocolate.py

to have it print something like this:

I can buy 4.285714285714286 chocolate bars!

Exercise 5-4

We mentioned a special operator called modulo. Google it if you do not remember what
it does. How about integer division. Explain both to a fellow student (or to yourself out
loud).

41

Exercise 5-5

You obviously cannot go buy 4.3 chocolate bars in a store. You will have to settle for
4. Can you change the program you made in exercise 5-3 to print the number of bars
you can buy and the change you then have left? Use the modulo and integer division
operators. Something like:

I can buy 4 chocolate bars, leaving me with 2 kr in change.

Exercise 5-6

What happens if you try to run the following program?

print(1 / 0)

If you get an error? What kind of error? Why do you think you get that error? Do you
think it makes sense?

Exercise 5-7

You probably know the Pythagorean theorem for computing a right-angled triangle’s
hypotenuse (the longest side). The Pythagorean theorem looks like this: a2 + b2 = c2.
Here c is the length of the hypotenuse, and a and b are the lengths of the triangle’s two
legs. So if we have a triangle where a = 5 and b = 2 and we want to find c2 we can do
this in Python:

print("The squared length of the hypotenuse is:", 5**2 + 2**2)

Exercise 5-8

However, we are rarely interested in the squared length of the hypotenuse. Can you
modify the code you wrote in exercise 5-7 so you compute c instead of c2? Taking
the square root of a number is the same as taking that number and exponentiating it
to 0.5, so the square root of x is x0.5. Do you know of a Python operator that does
exponentiation?

42

Logic

Now you know how to use the comparison operations to produce a True or False value.
There are three additional operators that let you express more elaborate “True/False”
statements than with the comparison operators alone. These are the logical operators:
and, or and not.

Exercise 5-9

Go through the code below and see if you can figure out what each line does. Then,
write the code into your editor and run it to see what happens.

print(2 < 3)
print(10 < 12)
print(8 > 100)
print(2 < 3 and 10 < 12)
print(8 > 100 and 2 < 3)
print(8 > 100 or 2 < 3)
print(not 8 > 100 and 2 < 3)
print(not 8 > 100 and not 2 > 3)

Did it do what you expected? Can you explain each line?

Exercise 5-10

When exposed to the operators and, or and not, some values are considered true and
others are considered false. What happens when you put not in front of something that
is considered true or false? Decide what you think and why before you write the code
and try it out.

print(not True)
print(not False)
print(not 0)
print(not -4)
print(not 0.0000000)
print(not 3.14159265359)
print(not "apple")
print(not "")

From the code above, try to find out which values Python considers true and which it
considers false. Can you come up with a rule?

43

Exercise 5-11

The logical operator and takes two values (the one to the left of the operator and the one
to the right) and figures out whether both the left and the right expression are true. It
boils down to this:

Left expression Right expression Result

True True True
True False False
False True False
False False False

Write some code to confirm that the table above is correct using Python. For example,
to test the first case, do this:

print(True and True)

Exercise 5-12

Python will only do the necessary work to determine if a logical expression is true. That
means that if the value left of and is considered false by Python, then there is no reason
to look at the right value since it is already established that they are not both considered
true. In this case the expression reduces to the left value. I.e. False and True reduces to
False.

If Python considers the value left of and true, then It needs to look at the right value,
too, to establish if they are both considered true. In this case, the expression reduces to
the value on the right. I.e., True and False reduces to False.

A rule of thumb is that the whole expression reduces to the last value that Python
needs to consider to decide if the whole expression is true or false. Use that rationale to
explain how the two last combinations in exercise 5-11 are evaluated.

Exercise 5-13

Like the and operator, the or operator also takes two values. However, the or operator
determines whether one of the two values is true. Thus, the or operator boils down to
this:

Left expression Right expression Result

True True True

44

Left expression Right expression Result

True False True
False True True
False False False

Write some code using Python to confirm that the table above is correct. For example,
to test the first case, do this:

print(True or True)

Exercise 5-14

As with the and operator, Python will not do any more work than absolutely necessary
when evaluating an expression with ‘or’. So if the value left of or is considered true by
Python, then there is no reason to look at the right value since it is already established
that at least one of them is considered true. In this case the expression reduces to the left
value. I.e. True or False reduces to True.

If the value left of or is considered false by Python, then Python still needs to look at
the right value to establish if at least one of them is considered true. In this case, the
expression reduces to the right value. I.e., False or True reduces to True.

Again, the whole expression reduces to the last value that Python needs to consider to
decide if the whole expression is true or false. Use that same rationale to explain to
yourself how the two last combinations in exercise 5-13 are evaluated.

Exercise 5-15

Remember what you learned in exercise 5-10 about which values are considered true
and which are considered false. Combine that with what you learned in exercise 5-11
and exercise 5-13 about what logical expressions reduce to and see if you can figure out
what is printed below and why. Use the rule-of-thumb from exercise 5-14. Decide what
you think before you write the code and try it out.

print(True and 4)
print(0 and 7)
print(-27 and 0.5)
print(42 and 0)
print("apple" and "orange")
print("apple" and "")
print(42 or 0)

45

print("apple" and "")
print("apple" or "")

If you were surprised by what was printed, maybe go back and look at exercise 5-11
and exercise 5-13 again.

Exercise 5-16

Recall the in operator from exercise 5-2? There is also an operator called not in. I guess
you can imagine what that tests. Try it out.

Variables

“

”

By now, you probably feel the first signs of brain overload. If you do not
take breaks, your brain may overheat and explode - we have seen that
happen. One of the nice things about the brain is that it works when you
rest. Archiving and understanding a lot of new information takes time,
and force-feeding your brain will not help. The last part of this chapter is
very important so now might be a good time for a good long break.

This section is about variables and is where the fun begins. A variable is a way of assign-
ing a name to a value. 8700000 is just a value, but if we assign a name to it, then it gets
a special meaning:

number_of_species = 8700000
print(number_of_species)

In this case, the variable number_of_species represents the estimated number of eu-
karyotic species on the planet, which is 8700000. So 8700000 is the value, and “num-
ber_of_species” is the variable name. Write the code above into a file and run it. Notice
how this lets us refer to the value using the variable name. What appears in the terminal
when you do that? Do you see number_of_species or 8700000?

As you can see in the small program above, one of two different things happens when
a variable name appears in Python code:

• Assignment: When a variable name appears to the left of an equal sign, a value is
assigned to the variable. This happens in the first line where number_of_species
is assigned the value 8700000.

46

http://www.nature.com/news/2011/110823/full/news.2011.498.html
http://www.nature.com/news/2011/110823/full/news.2011.498.html

• Substitution: In all other contexts, the variable is substituted for its value.
This happens in the second line where Python substitutes the variable name
number_of_species for its value 8700000 and then prints that.

That is it, but let us take the example further and create another variable to which we as-
sign the value 1200000. That is the number of species discovered so far. Now, let us add
this to the program and use it to compute the number of species we have yet to iden-
tify. Start by reading the code below super carefully. Remember that a variable is either
assigned a value or substituted for the value it represents. For each occurrence of the
variables below, determine if they are being assigned a value or if they are substituted
for their value.

number_of_species = 8700000
number_discovered = 1200000
number_unidentified = number_of_species - number_discovered
print(number_unidentified)

Now write the code into a file and run it. Take some time to let it sink in that variables
are extremely useful for two reasons:

1. Variables give meaning to a value. Without the variable name, the value of
1200000 could just as well be the number of people that live in Copenhagen.
However, by giving the value a meaningful name, it becomes clear what it
represents.

2. We can assign new values to variables (that is why they are called variables). For
example, we can change the value of number_discovered as new species are dis-
covered.

Your variable names can be pretty much anything, but they have to start with a letter
or an underscore (_), and the rest of the name has to be either letters, numbers, or un-
derscores. To be clear, a space is not any of those things, so do not use spaces in variable
names. Above all, be careful in your choice of variable names. Variable names are
case-sensitive, meaning that count and Count are different variables. Stick to lowercase
variable names. That makes your code easier to read.

Exercise 5-17

For each occurrence of the variables below, determine if they are being assigned a value
or if they are substituted for their value.

breeding_birds = 4
print(breeding_birds)
breeding_birds = 5
print(breeding_birds)

47

Exercise 5-18

For each occurrence of the variables below, determine if they are being assigned a value
or if they are substituted for their value.

breeding_birds = 4
print(breeding_birds)
breeding_birds = breeding_birds + 1
print(breeding_birds)

Exercise 5-19

What happens if you take the first example in this section and swap the two lines? So,
going from this:

number_of_species = 8700000
print(number_of_species)

to this:

print(number_of_species)
number_of_species = 8700000

Explain to yourself what happens in each case. What kind of error do you get with
version two, and why? Remember Oath 2!

Exercise 5-20

Write the following code in a file, save it, and run it.

income = 45000
taxpercentage = 0.43
tax_amount = tax_percentage * income
income_after_tax = income - tax_amount
print('Income after tax is', income_after_tax)

You should get an error that looks at lot like this one:

48

Traceback (most recent call last):
File "tax.py", line 3, in <module>

tax_amount = tax_percentage * income
NameError: name 'tax_percentage' is not defined

It says that the error is on line 3. Can you figure out what is wrong? Hopefully, you will
now appreciate how much attention to detail is required when programming. Every
tiny, little symbol or character in your code is essential.

Different types of values

By now, you probably have a pretty good idea of what a value in Python is. So far, you
have seen text like 'Banana', integers like 7, and numbers with a fractional part like
4.25.

In Python, a text value is a type of value called a string, which Python denotes as str
(abbreviation for “string”). So 'Banana' is a string, and so is 'Banana split'. There
are two types of numbers in Python. Integers (7, 42, and 3) are called int. Numbers
with a fractional part (like 3.1254 and 4.0) are that are called float (an abbreviation for
“floating-point number”).

As I mentioned earlier, True and False are Python values too. They are called booleans
or bool, named after an English mathematician called George Boole famous for his
work on logic.

So the different types of values we know so far are:

Name Type in Python Examples

String str "hello", '9'
Integer int 0, 2721, 9
Floating-point float 1.0, 4.4322
Boolean bool True, False
None NoneType None

In case you did not notice, I added a special type at the end that can only have the
value None. I may sound a little weird, but in programming, we sometimes need a
value representing nothing or None. For now, just make a mental note that None is also
a Python value.

When you do computations in Python, it is no problem to mix integers and floating-
point numbers. Try this:

49

https://en.wikipedia.org/wiki/George_Boole

print("What is 0.5 * 2?", 0.5 * 2)
print("What is 3 / 2?", 3 / 2)

As you can see we can also make computations using only integers that result in
floating-point numbers.

Some of the math operators not only work on numbers, but they also work on strings.
That way, you can add two strings together. It is no longer math, of course - but quite
handy.

fruit = 'Ba' + 'na' + 'na'
print(fruit)

Exercise 5-21

If you try to combine different types of values in ways that are not allowed in Python,
you will get an error. Try each of the following weird calculations, and read each error
message carefully.

x = 3 - '1.5'
print(x)

x = None - 4
print(x)

Exercise 5-22

Write these two examples and compare the resulting values of x

x = '9' + '4'
print(x)

x = 9 + 4
print(x)

Exercise 5-23

Try these two examples. What happens in each case? Does it make sense?

50

x = '72' * 3

x = '72' * '3'

Exercise 5-24

Will this work? Use what you have learned from the other exercises and try to predict
what will happen here. Then, write the code and try it out.

x = 'Ba' + 'na' * 2
print(x)

Exercise 5-25

Sometimes, you may need to change a string to a number. You can do that like this:

some_value = "42"
other_value = int(some_value)

Write some code that converts strings to numbers and numbers to strings. Remember
that numeric values are either integers or float. Use int, float as in the example above.
You will notice that only meaningful conversions work. E.g., this will not work: number
= int('four'). To convert a number to a string, you can use str.

Having completed the above exercises, you should take note of the following four im-
portant points:

1. All Python values have a type. You know about strings, integers, floating-points,
and booleans so far.

2. Math operators let you do cool things like concatenating two strings by adding
them together.

3. The flip side of that cool coin is that Python will assume you know what you are
doing if you add two strings ('4' + '4' is '44' not 8) or multiply a string with an
integer ('4' * 4 is '4444' not 16).

4. You can change the type of a value, e.g., '4' to 4 or 1 to 1.0.
5. Python will throw a TypeError if you try to combine types values of values in

ways that are not allowed.

“ ”
Escape characters: An escape character is a backslash \ followed by a
single character. \n and \t are the most commonly used ones.

51

Exercise 5-26

What do you think is printed here?

main_course = 'Duck a la Banana\n'
dessert = 'Banana split\n'
menu = main_course + dessert
print(menu)

Can you figure out what the special character \n represents?

Exercise 5-27

What do you think is printed here?

dish_one = 'Banana\t\tsplit'
dish_two = 'Chocolate\tcake'
print(dish_one)
print(dish_two)

Can you figure out what the special character \t represents?

Mixed exercises

Each chapter in the book ends with a set of mixed exercises meant to allow you to com-
bine what you have learned so far. In this case, they are meant to train your familiarity
with the following topics:

• Strings
• Math
• Logic
• Types of values
• Variables

Exercise 5-28

What happens if you try to run the following program?

52

print("What happens now?", 1 /)

If you get an error, why do you think you get that error?

Exercise 5-29

What happens if you try to run the following program?

print("What happens now?", 1 / 3

If you get an error, why do you think you get that error? Can you fix it? (Hint: EOF is
short for End Of File)

Exercise 5-30

Determine, for each of the eight occurrences of the variable x below, where it is being
assigned a value and when it is substituted for its value:

x = 1
x = x + 1
x = x + 1
x = x + 1
print(x)

Then, figure out what is printed and why (remember oath 2). What value does x repre-
sent at each occurrence in the code?

Exercise 5-31

Some comparison operators also work with strings. Consider this code:

print("apples" == "pears")

What is printed here? Write the code and see for yourself once you think you know. If
you were wrong, make sure you understand why.

53

Exercise 5-32

Consider this code:

print('aaaaaa' < 'b')
print('a' < 'b')
print('aa' < 'ab')
print('99' > '100')
print('four bananas' > 'one banana')

What is printed here? Write the code and see for yourself once you think you know. By
what rule does Python decide if one string is smaller than another? You may have a
clue if you have looked something up in an encyclopedia recently. Also, try to google
“ASCII table”.

Exercise 5-33

Consider this code:

print('banana' < 'Banana')

What is printed here? Write the code and see for yourself once you think you know.

Exercise 5-34

Do you think it is allowed to use relational operators on values of different types? Try
these out and see for yourself:

print('Banana' > 4)

print('42' == 43) # this one is dangerous...

print(4 in '1234')

Practice reading this kind of error (TypeError).

Exercise 5-35

Can you use the in operator to test if this mini gene is part of the DNA string?

54

mini_gene = 'ATGTAG'
dna_string = 'GCTATGTAGGTA'

Exercise 5-36

Say you have two strings "4" and "2". What happens if you add them like this: "4" +
"2". Can you convert each one to integers so you get 6 when you add them? (have a
look at exercise 5-25 if you do not remember).

Exercise 5-37

What happens if you run this code? Do you get an error? Do you remember why?

1value = 42

Exercise 5-38

What happens if you run this code?

print('Hi')
print('Hi')
print('Hi')

Compare this to what happens when you run this code:

print('Hi\nHi\nHi')

Do you remember what \n represents? What does it tell about what is added at the end
every time you print something?

Exercise 5-39

Make three exercises for your fellow students. See if you can make them so they test
the understanding of (almost) all you have learned so far.

55

6 The order of events

This chapter is about how Python interprets (or evaluates) the code you write. It has a few fancy
long words that may seem foreign to you. Do not let that throw you off. They are all just fancy
names for something straightforward.

Precedence of Operators

Fear not. Precedence is just a nasty word for something we have already talked about.
Precedence just means that some things are done before others or, more correctly, that
some operations are performed before others. You already know that multiplication is
done before addition. Another way of saying that is that multiplication takes precedence
over addition. The expression below obviously reduces to 7 in two steps:

1 + 3 2

First, 3 2 reduces to 6, and then 1 + 6 reduces to 7. If we wanted to add 1 and 3 first, we
would need to enforce this by adding parentheses:

(1 + 3) 2

This is because the multiplication operator (*) has higher precedence than the addition
operator (+). Here is the list of the most common operators and their precedence in
Python:

Level Category Operators

Highest exponent **
positive / negative +x, -x
multiplication *, /, //, %
addition +, -
relational !=, ==, <=, >=, <, >, in, not in
logical not
logical and

Lowest logical or

57

Sometimes, a statement contains adjacent operators with the same precedence. In this
case, Python evaluates the expression from left to right. I.e., This following expression
first reduces to 0.5 2 and then to 1

2 / 4 * 2

The following one first reduces to 1 4 and then to 4:

2 / 2 * 4

If you want Python to order the operations in any other way, you need to use parenthe-
ses (E.g., 2 / (2 * 4)).

Exercise 6-1

Look at each expression in the exercises below and use the table above to decide if it
evaluates to True or False. Then, write the code and test if you were right. If not, figure
out why.

2 + 4 * 7 == 2 + (4 * 7)

Exercise 6-2

Does this reduce to True or False?

4 > 3 and 2 < 1 or 7 > 2

Exercise 6-3

Does this reduce to True or False?

4 > 3 and (2 < 1 or 7 > 2)

Exercise 6-4

Does this reduce to True or False?

58

2 * 4 ** 4 + 1 == (2 * 4) ** (4 + 1)

Statements and Expressions

To talk concisely about programming (and to receive more useful help from your in-
structors), you need to have a bit of vocabulary. Statements and expressions are two
words you need to know. Distinguishing between statements and expressions will help
us discuss our code.

• A statement is a line of code that performs an action. Python evaluates each
statement until it reaches the end of the file (remember oath 2?). print(y * 7) is
a statement, and so is x = 14. They each represent a full line of code and perform
an action.

• An expression is any code that reduces to one value. y * 7 is an expression, and
so are y * 7 + 14 - x and 4 > 5.

We will talk more about how Python handles expressions in the next section, but right
now, you must understand that statements do something while expressions are things
that reduce to a value. Hopefully, this distinction will be more clear after completing
the following exercises.

Exercise 6-5

Did you notice in the above examples that print(y * 7) is a statement and y * 7 is
an expression? Yes, expressions can be part of statements. In fact, they most often are.
Similarly, expressions are often made up of other smaller expressions. E.g., y * 7 is part
of the longer expression y * 7 + 14 - x.

Take a look at this code:

x = 5
y = 20
z = (x + y) / 2 + 20
print(z * 2 + 1)
h = 2 * x - 9 * 48
print(h)

Write down the code on a piece of paper. Now, mark all statements and all expressions.
Remember that expressions are often made up of smaller expressions so that you can
find a lot of them. E.g. (x + y), 2 + 20, and (x + y) / 2 + 20 are all expressions. A
single variable (like x) is also a small expression. Discuss with a fellow student. Do you
agree on what to find?

59

Exercise 6-6

Consider the following code:

greeting = 'Hello' + ' my '
print(greeting + 'friend')

How many statements are there in this piece of code? How many expressions?

Substitution and Reduction

Although substitution and reduction may not sound like your new best friends, they
truly are! If you remember to think about your Python code in terms of substitution
and reduction, then programming will make a lot of sense. Understanding and using
these simple rules will allow you to read and understand any code. If you do not, you
may get by for a while - only to find yourself in big trouble later when things become
more complicated.

You should remember, from the section on variables in the previous chapter, that vari-
ables in Python are either assigned a value or substituted for the value they represent.

In the first two lines of code below, the variables x and y are each assigned a value. Now
consider the last line in the example:

x = 4
y = 3
z = x * y + 8

Here, x is substituted by the value 4, and y is substituted by the value 3. So now the
expression after the equals sign reads 4 * 3 + 8. Because we multiply before we add,
4 * 3 reduces to 12 so that the expression now reads 12 + 8. Finally, this reduces to the
value 20. The very last thing that happens is that the variable z is assigned the value
20.

You should do these steps every time you see an expression. You may think this is
overdoing things a bit, but it is not. This kind of explicit thinking is what programming
is all about, and it will become increasingly important as the course progresses. So
make sure you make it a habit while it still seems trivial. Then, over time, it will become
second nature.

Now raise your right hand and read the third and last oath out loud:

60

“
”

Oath 3: I now solemnly swear to consciously consider every single substi-
tution and reduction in every Python expression that I read or write from
this moment on.

This was the last of the three oaths, but it is by far the most important one. You can take
your hand down now.

NB: You may not realize this at this point, but the last two subsections are the most
important ones in the book. Go back and read them many times as you proceed through
the course. If you explicitly think in terms of substitution and reduction, you will be
fine. If you do not, you are entering a minefield with snowshoes on.

Exercise 6-7

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

x = 7
y = 4 + x
2 + x * x**2 + y - x

Exercise 6-8

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

a = 4
b = a
c = 2
c = a + b + c

Exercise 6-9

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

x = 1
x = x

61

Exercise 6-10

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

microsatellite = "GTC" * 41

Surprised?

Exercise 6-11

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

mini_gene = "ATG" + "GCG" + "TAA"

What did you do first here? Does the order of additions matter? What operations does
Python perform first when operators have the same precedence? (left to right or right
to left)

Exercise 6-12

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

number = 1 / 1 * 4

In what order are reductions made? Does the order of operations matter, and in what
order does Python do the reductions?

Exercise 6-13

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

x = 4
y = x + x

62

Exercise 6-14

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

x = 4
x = x + 1

Exercise 6-15

Do the substitution and reduction steps with pen and paper, then run it to check your-
self by inserting a print statement at the end.

x = 4
x += 1

Compare the final value of x to that in exercise 6-14. Can you see what += is a shorthand
for? Nifty, right?

General exercises

The following exercises are meant to train your familiarity with the topics we have
treated so far – in this case especially:

• Substitution
• Reduction
• Assignment
• Simple precedence rules
• Comparison operators
• Logical operators
• Distinction between text and numbers

Read each exercise and think hard about the questions before you code anything. Then
write the code and try it out. Remember that it is crucial that you type it in – as super
dull as it may be (remember oath one). This trains your accuracy and attention to detail,
and it builds programming into your brain. Play around with each bit of code. Make
small changes and see how it behaves.

There is a reason why there are lots of questions in this exercise but no answers. You
are supposed to find them yourself if it takes you quite a while. That is the way you
build understanding. Some of the questions may seem trivial, but do them anyway. If
you only understand these concepts superficially, they will come back and bite you in
the ass when things get more complicated.

63

Exercise 6-16

Consider this code:

1.2 * 3 + 4 / 5.2

What does that expression evaluate to? Try to explicitly make all the reductions on
paper before you write and run the code.

Exercise 6-17

Consider this code:

1.2 * (3 + 4) / 5.2

What does that expression evaluate to? Try to explicitly make all the reductions on
paper before you write and run the code.

Exercise 6-18

Consider this code:

10 % 3 - 2

What does that expression evaluate to? Try to explicitly make all the reductions on
paper before you write and run the code.

Exercise 6-19

Consider this code:

11 % (7 - 5)**2

What does that expression evaluate to? Try to explicitly make all the reductions on
paper before you write and run the code.

Exercise 6-20

Consider this code:

64

a = 5
x = 9
banana = 7
x + 4 * a > banana

What does the last expression evaluate to? Try to explicitly make all the substitutions
and reductions on paper before writing the code. What happens if you write and run
the code? Why?

Exercise 6-21

Consider this code:

dance = 'can'
dance = dance + dance
print("Do the", dance)

What is printed? Try to explicitly make all the substitutions and reductions on paper
before writing the code. What happens if you write and run the code? Why?

Exercise 6-22

Consider this code:

foo = 30
bar = 50
baz = bar + foo
print(baz)
bar = 10
print(baz)

There are two print statements. The first print statement prints 80. But what about
the second print statement? Does that print 80 or 40? Find out and make sure you
understand why it prints what it prints. If not, reread the section on substitution.

Exercise 6-23

Consider this code:

65

1 == '1'

and this:

1 == 1.0

What does this reduce to? Try printing it and seeing once you think you know. If you
were wrong, make sure you figure out why.

Exercise 6-24

Consider this code:

a = '1'
b = '2'
c = a + b
print(a, b, c)
print(a + b == 3)

What is printed here? Write the code and see for yourself once you think you know. If
you were wrong, make sure you understand why.

Exercise 6-25

Consider this code:

a = 1
b = 2
c = a + b
print(a, b, c)
print(a + b == 3)

What is printed here? Compare to exercise 6-24. Write the code and see for yourself
once you think you know. If you were wrong, make sure you understand why.

Exercise 6-26

Consider this code:

66

x = 4
print(x + 2 and 7)
print(x + 2 or 7)
x = -2
print(x + 2 and 7)
print(x + 2 or 7)

What is printed here? Write the code and see for yourself once you think you know. If
you were wrong, make sure you understand why.

Exercise {#sec-puzzle) 6-27

I have shuffled the statements in the code below. Put them in the right order to make
the code print 100.

x = x + 4
print(x)
x = x * 5
x = x * x
x = 4

Exercise 6-28

I have shuffled the statements in the code below. Put them in the right order to make
the code print the string “‘Banana.”

y = 'n'
x = 'B' + y + x
print(x)
x = 'a'
y = (x + y) * 2

Exercise 6-29

Make a puzzle exercise, like the two previous ones, for a fellow student.

Exercise 6-30

Remind yourself of the different types of Python values you know. For example, one of
them is an integer (int). Make a list.

67

Exercise 6-31

You already know about several types of data values in Python. Two are integers called
int, and decimal numbers (or floating points) called float. When you use an operator
like + or > it produces a value. No matter what you put on either side of > it produces
a boolean value (bool), True or False. For other operators, the type of value produced
depends on which values the operator works on. Try this and see if you print an integer
or a float (8 or 8.0):

x = 4
y = 2
result = x * y
print(result)

Now try to replace 4 with 4.0. What type is the result now? Try to also replace 2
with 2.0. What type is the result now? Can you extract a rule for what the * operator
produces depending on what types the two values have?

Exercise 6-32

In exercise 6-31, you investigated what types of values the * operator produces. Redo
that exercise with the operators: +, -, /, **, //, and %. What are the rules for what is
returned if both values are integers, one value is a float, or both values are floats?

Exercise 6-33

Make a list of all the operators you know so far in order of precedence (without looking
in the notes). Then check yourself.

Exercise 6-34

What does his expression reduce to, and what type of value is it?

3 > 2

68

Exercise 6-35

What does his expression reduce to, and what type of value is it? Do all the reduction
steps in your head.

2 - 4 * 5 - 2 * 1/3

Exercise 6-36

What does his expression reduce to, and what type of value is it? Do all the reduction
steps in your head.

3 > 2 and 2 - 4 * 5 - 2 * 9

Exercise 6-37

What is printed here and why?:

print(True and "banana" or "orange")

Try to change the True value to False and see what happens. Can you explain it? If not,
look at exercise 5-14 again.

Exercise 6-38

What does his expression reduce to? Do all the reduction steps in your head.

0 and 1 or 2

Exercise 6-39

What does his expression reduce to? Do all the reduction steps in your head.

4 and 1 or 2

Exercise 6-40

If you understood exercise 6-37, then you should also understand this one:

69

weather = 'rain'
what_to_do = weather == 'rain' and 'watch movies' or 'go swimming'
print(what_to_do)

What happens if you change 'rain' in the first line to something else (like 'sun')?

Exercise 6-41

What is the value of results once the code below has run? Do the substitutions, reduc-
tions, and assignments in your head before you run the code.

x = 7
y = 13
z = x + y
x = 0
result = x + y + z

Exercise 6-42

What is the value of results once the code below has run? Do the substitutions, reduc-
tions, and assignments in your head before you run the code.

x = 5
y = x + 1
x = y + 1
y = x + 1
result = x + y

Exercise 6-43

In the code below I have shuffled the statements. Put them in the right order to make
the code print 9. To do that you must think about which values each variable will in
each statement depending on the how you order the statements.

x = x + 1
y = 5
y = y - 1
print(y)
x = 1
y = y * x

70

Exercise 6-44

In the code below, I have shuffled the statements. Put them in the right order to make
the code print 'Mogens'

c = b
print(c)
a = b + a
b = 'og'
b = c + a
c = 'M'
a = 'ens'

Exercise 6-45

Make three exercises that require the knowledge of programming so far. Have your
fellow students solve them.

71

7 Course tools

Wax on, wax off

“

”

Mr. Miyagi: First, wash all car. Then wax. Wax on. . .

Daniel: Hey, why do I have to. . . ?

Mr. Miyagi: Ah ah! Remember deal! No questions!

Daniel: Yeah, but. . .

Mr. Miyagi: Hai! Wax on, right hand. Wax off, left hand. Wax on, wax off.
Breathe in through nose, out of mouth. Wax on, wax off. Don’t forget to
breathe, very important. [walks away, still making circular motions with
hands] Wax on. . . wax off. Wax on. . . wax off.

Seeing the sequence of substitutions and reductions in a Python expression will become
natural over time. Until it does, you are in troubled waters, and if you do not practice
in time, you may only realize this too late. Considering how simple this is to practice
and how crucial it is to your progress, I have written a small companion program called
myiagi where you can train this particular skill daily. The program is installed in the
conda environment you created for this source, so make sure it is activated as described.
To run the program, you execute this command in the terminal:

myiagi

It should look like Figure 7.1, and the simple game is as follows. The program generates
a Python expression. From that expression, all the substitution and reduction steps are
performed. Each substitution or reduction results in an intermediate expression until
only a single Python value remains. Here is an example where the expression is 4 * y
+ x and the value it reduces to is 37:

1. 4 * y + x
2. 4 * 8 + x
3. 24 + x
4. 24 + 13
5. 37

73

Figure 7.1: Visual Studio Code (VScode)

You do not know what values the y and x variables point to, but you can deduce it from
the sequence of expressions that they are 24 and 13. In the game, you are given a series
of numbered expressions in the wrong order like this:

1. 4 * y + x
2. 37
3. 4 * 8 + x
4. 24 + x
5. 24 + 13

Your task is to put them in the right order so that the original expression is at the top
and the single Python value it reduces to is at the bottom. Now, you might grab line 2
by tabbing 2 on your keyboard (the number turns red so you can see it is active). Then,
you move the line using the up/down arrow keys. If you move it to the bottom, the list
then looks like this:

1. 4 * y + x
2. 4 * 8 + x
3. 24 + x
4. 24 + 13
5. 37

74

Now, you repeat this process until the order is correct (the program will let you know
when it is). The fewer lines you grab to produce the right order, the more points you
earn. Problems with longer lists of expressions also earn you more points. As problems
become harder and include more aspects of Python, solving them also awards more
points. Each week has a score goal to guide your effort. Reaching this goal ensures that
you practice as much as you should. Practicing a bit every day daily is more effective
than practicing a lot a few days a week. To provide an incentive, the points you earn
slowly expire, so the easiest way to maintain your score is to practice a bit every day.

A helping hand

Using the myiagi, you train your ability to read and understand Python expressions.
Seeing a similar breakdown of a Python expression in your code may also be helpful.
For that purpose, I have written another tool called print-steps. Say you have some
code like the one below and need clarification on how the single value assigned to z is
produced (here, you are probably not).

x = 7
y = 5
z = x * y + 4

All you need to do is then to add # PRINT STEPS comment to the end of the line like
this:

x = 7
y = 5
z = x * y + 4 # PRINT STEPS

Say your file is called myfile.py, you would normally run the code like this:

Listing 7.1 Terminal

python myfile.py

But to see the breakdown of expressions marked by # PRINT STEPS, you need to run
your code with the print-steps program instead:

The command prints the following in the terminal:

75

Listing 7.2 Terminal

print-steps myfile.py

Line 4 in test_studentfile.py:
As written: z = x * y + 4
Substitution: z = 7 * y + 4
Substitution: z = 7 * 5 + 4
Reduction: z = 35 + 4
Reduction: z = 39

You can even mark more than one line like this and have print-steps break down all
of them for you:

x = 7
y = 5
z = x * y + 4 # PRINT STEPS
k = z * 42 # PRINT STEPS

like this:

Line 3 in myfile.py:
As written: z = x * y + 4
Substitution: z = 7 * y + 4
Substitution: z = 7 * 5 + 4
Reduction: z = 35 + 4
Reduction: z = 39

Line 4 in myfile.py:
As written: k = z * 42
Substitution: k = 39 * 42
Reduction: k = 1638

However, it would be best if you used this helping hand sparingly. It is much better
to train your ability to do this in your head with the help of Mr. Myagi. Trust me, it
works.

76

8 Controlling behavior

This chapter is about how you make your program do different things under different circum-
stances. Making functionality dependent on data is what makes programs useful.

If-statement

So far, the small programs you have written run the same sequence of statements (lines).
Imagine if you could control which statements were run depending on the circum-
stances. Then, you would be able to write more flexible and useful programs. Cue
the music - and let me introduce the “if-statement”.

Write the following carefully into a file. It is a small program that monitors bus passen-
ger status. Notice the colon ending the if-statements. Also, note that the lines below
each if-statement are indented with precisely four spaces. While writing the program,
figure out what the if-statement does. Then, run the code and see what happens.

bus_seats = 32
passengers = 20
bags = 20

print(passengers, "people ride the bus")

if bus_seats >= passengers + bags:
print("Smiles, everyone has room for bags")

if bus_seats >= passengers:
print('Everyone gets to sit down, no complaints')

if bus_seats < passengers:
print('Some passengers standing, annoyed')

if bus_seats < passengers / 3:
print("General dissatisfaction, some swearing too")

Try changing the values of bus_seats, passengers, and bags and see how the program
executes.

77

You have probably realized that the if-statements control which prints statements that
are evaluated. A statement nested under an if-statement is only evaluated if the expres-
sion between the if keyword and the : reduces to a value Python considers as true.
This does not happen if the expression between the if and : reduces to a value Python
considers false.

When asked to evaluate something as true or false, Python will interpret zero and
empty values (like 0 and '') as False and all other non-zero and non-empty values
as True.

Exercise 8-1

Which of the following letters are printed: A, B, C, D, E, F, G. Make up your mind before
you write and run the code.

if 0:
print('A')

if "Banana":
print('B')

if 3.14159265359:
print('C')

if False:
print('D')

if 9 > 5 and 4 < 7:
print('E')

if '':
print('F')

if False or "banana":
print('G')

Exercise 8-2

What happens if you forget to write the : in the if-statement?

if 4 > 2
print('Hi!')

78

Exercise 8-3

What happens if you do not indent the code under the if-statement?

if 4 > 2:
print('Hi!')

“
”

By now, you probably know that your text editor is intelligent regarding
indentation. If you hit Enter after a statement ending with :, it will indent
the next line with four spaces. Also, if you use the tab in Python code, it
will produce four spaces for you.

FAQ

Q: Isn’t “If” a poem by Rudyard Kipling?
A: Yes.

Else-statement

Sometimes you not only want your program to do something if an expression reduces
to True, you also want it to do something else if it is False. It is as simple as it looks:

cookies = 3

if cookies > 0:
print("Uh, I wonder if we have some milk too...")

else:
print("Sigh!")

Remember to put a : after the else keyword. Write the code and change the value of
cookies to 0.

Exercise 8-4

Test your understanding about which expressions that reduce to a True or False value.
Write the code below and then see how it responds to different values of x. Try to come
up with other variations yourself.

79

https://www.poetryfoundation.org/poems-and-poets/poems/detail/46473

x = 0.0
x = '0'
x = ' '
x = ''
x = not 0
x = 'zero'

if x:
print('x is substituted with True in the if-statement')

else:
print('x is substituted with False in the if-statement)

FAQ

Q: Isn’t “Else” a poem by Rudyard Kipling?
A: No.

Exercise 8-5

What do you think this code prints? Notice how you can nest if and else-statements
under other if and else-statements. This way, you can make your program include only
some statements when certain combinations of conditions are met. Just remember that
the code below each if or else is indented by four spaces. Try to change the True/False
values of milk and cookies.

milk = False
cookies = True
if milk:

if cookies:
status = 'Good times!'

else:
status = 'Not thirsty, thanks or asking'

else:
if cookies:

status = 'How does something like this happen?'
else:

status = 'Whatever...'

print(status)

80

Blocks of code

In the examples above, some lines are indented more than others, and you probably
already have some idea of how Python interprets this. Indentation defines blocks of
code. The if and else statements control each code block’s evaluation when your code
runs. The following three rules define individual blocks of code:

1. All statements in a code block have the same indentation. That is, they line up
vertically.

2. A block of code begins at the first line of code at a line that is indented more than
the one before it.

3. A block ends when it is followed by a less indented line or at the last line of code.

This way, a block can be nested inside another block by indenting it further to the right,
as shown in Figure 8.1. Compare the example in Figure 8.1 to the code example above.
Note how a colon at the end of a statement means “this applies the block of code below”.
Make sure you understand which print statements are controlled by which if and else
statements.

Figure 8.1: The amount of indentation defines blocks of code

Elif-statement

Say you need to test several mutually exclusive scenarios. For example, if a base is
equal to A, T, C, or G. You can do that like in the example below, but it is very verbose
and shifts your code further and further to the right.

base = 'G'

if base == 'A':

81

print('This is adenine')
else:

if base == 'T':
print('This is thymine')

else:
if base == 'C':

print('This is cytosine')
else:

print('This is guanine')

This is where an elif statement can be helpful. It is basically short for “else if.” The
correspondence is hopefully obvious if you compare it to the example below.

base = 'G'

if base == 'A':
print('This is adenine')

elif base == 'T':
print('This is thymine')

elif base == 'C':
print('This is cytosine')

else:
print('This is guanine')

Here, we put an else-statement at the end to capture all cases not covered by the if-
statement and the two elif-statements.

Exercise 8-6

You can use logical operators (and, or, not) in the expressions tested in an if-statement.
Can you change the program from exercise 8-5 so that there are no nested if-statements
- in a way that the program still does the same? You can use if, elif, and else and test
if, e.g., milk and cookies are true using and.

Exercise 8-7

The snippet of code below has three blocks with three statements. Which statements
belong to which block? Which statements are executed?

82

x = 5
if x > 4:

y = 3
if x < 1:

x = 2
y = 7
z = 1

x = 1
z = 4

Exercise 8-8

Can you see four blocks of code? If not, read the three rules above again. Which state-
ments are executed?

x = 5
if x > 4:

y = 3
if x < 1:

x = 2
y = 7

else:
x = 1
y = 9

z = 4

General exercises

Exercise 8-9

Will this print You are a superstar!?

if -4 and 0 or 'banana' and not False:
print("You are a super star!")

Exercise 8-10

Will this print You are a superstar!?

83

if -1 + 16 % 5 == 0 :
print("You are a super star!")

Exercise 8-11

Assign values to two variables, x and y. Then, write code that prints OK if (and only if)
x is smaller than five and y is larger than five. Do it using two if statements:

x = 3 # or something else
y = 7 # or something else

rest of code here...

Now solve the same problem using only one if statement.

Exercise 8-12

Assign values to two variables, x and y. Then, write some code that prints OK if and
only if x is smaller than five or y is larger than five. Do it using two if statements:

x = 3 # or something else
7 = 7 # or something else

rest of code here...

Now solve the same problem using only one if statement and one elif statement.

Exercise 8-13

Assign values to two variables, x and y. Then, write some code that prints OK if either x
or y is zero but not if both are zero (this is tricky).

x = 3 # or something else
y = 7 # or something else

rest of code here...

84

Exercise 8-14

Which value of x makes the code below print Banana?

x =
s = ''
if x**2 == 16:

s = s + 'Ba'
if x + 6 == 2:

s = s + 'na'
if 7 == x - 3:

s = 'na' * 2
else:

s = s + 'na'
print(s)

Exercise 8-15

Make three exercises that require the knowledge of programming so far. Have your
fellow students solve them.

85

9 Organizing code

This chapter is about organizing your code into chunks that you can call upon to perform well-
defined tasks in your program.

Functions

Buckle down for the most powerful and useful thing in programming. Functions! Func-
tions serve as mini-programs that perform small, well-defined tasks in your program.

I have started to write a song about functions:

print("Functions are super, Functions are cool")
print("When writing a program they are a great tool")
print("La la dim du da da di")
print("Skubi dubi dumdi di")
print("Bing di dubi dum da di")

print("Functions are used to package some code")
print("They are not so strange that your head will explode")
print("La la dim du da da di")
print("Skubi dubi dumdi di")
print("Bing di dubi dum da di")

I will add many more verses, and I do not want to write the entire chorus every time.
So what would be more natural than to make a function named chorus that takes care
of that for us? That way, we can write our song the way lyrics with a chorus are usually
written:

def chorus():
line1 = "La la dim du da da di"
line2 = "Skubi dubi dumdi di"
line3 = "Bing di dubi dum da di"
return line1 + '\n' + line2 + '\n' + line3

print("Functions are super, Functions are cool")

87

print("When writing a program they are a great tool")
print(chorus())

print("Functions are useful to wrap up some code")
print("They are not so strange that your head will explode")
print(chorus())

First, let us break down the function definition in the top part of this code:

1. We define a function with the def keyword (which is short for “define” in case you
wonder).

2. After def, we write the function chorus. We could name it something else, but
like good variable names, good function names can help you remember what
your code does.

3. After the name, you put two parentheses, ().
4. Then a colon, :.
5. The statements that are part of the function are nested under the def statement

and are indented with four spaces exactly like we do under if-statements.
6. The return statement ends the function. After the return keyword, the expression

reduces to a value that the function returns.

When Python runs this code, each line is executed one by one, starting from the first line
(remember oath two?). So, in this case, python first executes the definition of the chorus
function. The only thing that happened after Python had executed the first five lines of
code was that it assigned the name chorus to the four indented statements. So Python
now “knows” about the chorus function (like it “knows” about a variable x after we do
x = 4).

To use the function, we “call” it by writing its name followed by parentheses: chorus().
When it comes to functions, “use”, “call” and “run” means the same thing. As you can
see, we call the function twice in the rest of the code. Each time we do, the following
happens:

1. When a function is called, each statement in the definition is executed one after the
other. If you look at the function definition, you can see that our chorus function
has four statements.

2. The first statement assigns a string value to the line1 variable.
3. The second statement assigns a string value to the line2 variable.
4. The third statement assigns a string value to the line3 variable.
5. The fourth statement is a return statement. The expression after the return key-

word in the final statement is reduced to a value, and this value is substituted for
the function call. In this case, that value is the following string:

88

"La la dim du da da di\nSkubi dubi dumdi di\nBing di dubi dum da di"

So, the key properties of functions are:

• A function names a piece of code (some statements) just like variables name val-
ues like strings and numbers.

• We call a function by writing the function name followed by parentheses:
chorus(). Just writing the function name will not call the function.

• When a function is called, it is substituted by the value that the function returns –
exactly like a variable in an expression is substituted by its value. It is crucial that
you remember this.

Exercise 9-1

Now that we have a chorus function, that part is out of the way, and we can concentrate
on our song without worrying about remembering how many “la la”s it has and so on.
Try to change the “lyrics” in the chorus a little bit. Notice how you only need to make
the change in one place to change all the choruses in the song – cool, right? Without
the function, you would have to rely on correctly changing the code in many different
places.

Exercise 9-2

Try to delete the return statement in the chorus function (the last line in the function)
and run the code again. You should see something like this:

Functions are super, Functions are cool
When writing a program they are a great tool
None
Functions are used to wrap up some code
They are not so strange that your head will explode
None

The function call (chorus()) is now substituted with None. How can that be when we
did not return anything? The reason is that when you do not specify a return statement,
the function returns None by default. This is to honour the rule that variables and a
function calls are substituted by a value, and None is simply the value that Python uses
to represent “nothing”. None is a value denoting the lack of value. As you just saw, it
represents that no value is returned from a function. It can also be assigned to a variable
as a placeholder value until another value is assigned:

89

x = None
x = 4

Also, None is considered false in a logical context:

print(not None)

Exercise 9-3

Try this variant to the chorus function. Go through the code slowly and repeat all the
steps to break down what happens when a function is called. Remember also to do
each substitution and reduction carefully.

def chorus():
line1 = 'La la'
line2 = 'Du bi du'
return line1 + '\n' + line2

Do the same for this variant:

def chorus():
line1 = 'La la'
line2 = 'Du bi du'
chrous_text = line1 + '\n' + line2
return chrorus_text

and for this variant:

def chorus():
return "La la\nDu bi du"

Exercise 9-4

What do you think happens if you move the definition of chorus to the bottom of your
file? Decide what you think will happen and why (maybe you remember what happens
when you try to use a variable in an expression before defining it?). Then try it out.

90

print("Functions are super, Functions are cool")
print("When writing a program they are a great tool")
print(chorus())

print("Functions are useful to wrap up some code")
print("They are not so strange that your head will explode")
print(chorus())

def chorus():
line1 = "La la dim du da da di"
line2 = "Skubi dubi dumdi di"
line3 = "Bing di dubi dum da di"
return line1 + '\n' + line2 + '\n' + line3

Ensure you understand how the error you get relates to how Python runs your script
(remember oath two?). If you still need help understanding, do the next exercise and
then return to this one.

Exercise 9-5

Which error do you get here, and why? How is that similar to the error in the previous
exercise?

print(x)
x = 7

Exercise 9-6

Consider the code below. Do all the substitution and reduction steps in your head.
Remember that each function call is substituted by the value that the function returns.
Then run it.

def lucky_number():
return 7

x = lucky_number()
y = lucky_number()
twice_as_lucky = x + y
print(twice_as_lucky)

91

Now, change the code to that below. The code makes the same computation but in
fewer steps. Do all the substitution and reduction steps.

def lucky_number():
return 7

twice_as_lucky = lucky_number() + lucky_number()
print(twice_as_lucky)

Now, change the code to the one below. The code makes the exact computation but in
fewer steps. Do all the substitution and reduction steps.

def lucky_number():
return 7

print(lucky_number() + lucky_number())

Functions can take arguments

The functions we have written so far are not very flexible because they return the same
thing every time they are called. Now write and run this beauty:

def square(number):
squared_number = number**2
return squared_number

result = square(3)
print(result)

Notice how we put a variable (number) between parentheses in the function definition.
This variable is assigned the value we put between the parentheses (3) when we call
the function. So when we call like that (square(3)), Python automatically makes the
assignment number = 3.

Here is another example:

def divide(numerator, denominator):
result = numerator / denominator
return result

division_result = divide(44, 77)
print(division_result)

92

When the function call divide(44, 77), these two things implicitly happen: numerator
= 44 and denominator = 77.

Take note of the following three important points: 1. The values that we pass to the
function in the function call (like 3, 44, and 77) are called arguments. It is crucial to
remember that it is values and not variables that are passed to functions. 2. The variables
in the definition line of a function, like number, numerator and denominator, are called
parameters. They hold the values passed to the function when it is called (the arguments).
3. You can define functions with any number of parameters if you use the same number
of arguments when you call the function.

Exercise 9-7

Try to call your divide function like this divide(77, 44). What does it return, and what
do you learn from it? Does the order of arguments and parameters correspond?

Exercise 9-8

Try to call your divide function like this divide(44). Do you get an error, and what do
you learn from that?

Exercise 9-9

Try to call your divide function like this divide(44, 77, 33). Do you get a different
error message, and what do you learn from that?

Exercise 9-10

Read this code and do all substitution and reduction steps from beginning to end.

def square(x):
return x ** 2

result = square(9) + square(5)
print("The result is:", result)

Now replace the line return x ** 2 with print(x ** 2). What is printed now and
why?

93

Exercise 9-11

As described above, a return statement ends the function by producing the value that
replaces the function call. If a function has more than one return statement, then the
function ends when the first one is executed.

def assess_number(x):
if x < 3:

return 'quite a few'
if x < 100:

return 'a lot'
return 'a whole lot'

nr_apples = 2
print(nr_apples, "apples is", assess_number(nr_apples))

What happens when x is 2, 3, 50, 200? Think about it first.

Functions and variables

A function call is the temporary little world that only exists when the function is called
and until it returns its value. It did not exist before the function was called, and it does
not exist after the function returns its value. By necessity, the variables defined in your
function are also temporary.

This means variables defined inside a function are private to each function call. It also
means that variables defined inside functions are unavailable to code outside the func-
tion. Running the following example should help you understand this:

def make_greeting():
greeting = 'Guten tag'
name = 'Heinz'
message = greeting + " " + name
return message

greeting = 'Buongiorno'
name = 'Giovanni'
print(make_greeting())
print(greeting + " " + name)

Notice how Heinz and Giovanni are greeted in their native languages. This means that
the variable definitions inside the function do not overwrite the Italian versions already

94

defined outside the function. This is because the variables defined in the function are
temporary and private to the function, even if they have the same names as variables
outside the function. This is why the function call make_greeting() in the print state-
ment does not change the variables’ values printed in the last line.

Now try to “comment out” the line greeting = 'Guten tag' and run the example again.
All of a sudden, Heinz is greeted in Italian! The reason is that now Python cannot find
a definition of greeting inside the function. It then looks outside the function for a
definition and finds the Italian version.

Now try to “comment out” the line greeting = 'Buongiorno' and run the example
again. You get an error, but which one? Python complains that it cannot find a defini-
tion of greeting. The reason is that once the last print statement is executed, the small
world of the function call in the previous line no longer exists.

You should learn two rules from the above example:

1. All variables you define inside a function are private to the function. If a variable
in a function has the same name as a variable in the main script (like greeting
above), then these are two separate variables that just happen to have the same
name.

2. When you use a variable like greeting in the function (E.g., message = greeting
+ " " + name), Python checks if the variables have been defined in the function. If
that is not the case, then it will look for it outside the function. In the above exam-
ple, name is found in the function, and greeting is found outside the function. It
is good practice to make your functions “self-contained” in the sense that Python
should not have to look outside the function for variables.

Exercise 9-12

Try this version of the example above. Now, name is defined as a function parameter,
but it is still a function variable, just like greeting.

def make_greeting(name):
greeting = "Guten tag"
message = greeting + " " + name
return message

greeting = 'Buongiorno'
name = 'Giovanni'
print(make_greeting("Heinz"))
print(greeting + " " + name)

95

Exercise 9-13

Consider the following example:

def double(z):
return z * 2

x = 7
result = double(x)
print(result)

When the function is called (double(x)), the x is substituted by its value 7. That value is
passed as the argument and assigned to the function parameter z (z = 7). z is a private
function variable and does not exist before or after the function call. Does this change
in any way if we use the variable name x instead of z, as shown below?

def double(x):
return x * 2

x = 7
result = double(x)
print(result)

Do all substations and reductions for each line of code from top to bottom. Keep the se-
quence of events in mind and remember that a function definition is merely a template
describing a mini-world that is created anew every time the function is called.

Builtin functions

So far we have only talked about functions you write yourself, but Python also has built-
in functions that are already available to you. They work just like a function you would
write yourself. You already know the print function quite well; that is an example of
a function that prints something but returns None. There are many other useful built-in
functions, but I will tell you about another two: len and type.

Exercise 9-14

Try these examples:

96

x = 'Banana'
print("The value of variable x is of type", type(x))
print("The value of variable x has length", len(x))

As you can see, type returns the type of the value passed as the argument, and len
returns the length of the value passed as the argument. The type function is handy if
you wonder what type a value has, but it is not a function we will use in this course.
The len function, however, is your new best friend. You will see why soon enough.

Exercise 9-15

Try to change the value of the x in exercise 9-14 to an integer or a float and see what
happens when you run it. Do you get an error? Does it make sense that not all types of
values can meaningfully be said to have a length?

Exercise 9-16

What happens if you pass an empty string ("") as the argument to the len function?

Exercise 9-17

What is printed here? Think about it first, and then try it out. Remember to do the
substitution and reduction steps.

return_value = print("Hello world")
print(return_value)

Exercise 9-18

What is printed here? Think about it firs,t and then try it out. Remember to do the
substitution and reduction steps.

print(print("Hello world"))

97

General exercises

The following exercises treat the areas we have worked on in this and previous chapters.
They are meant to train your familiarity with if-statements and functions. Remember
that the purpose of the exercises is not to answer the questions but to train the chain of
thought that allows you to answer them. Play around with the code for each example
and see what happens if you change it a bit.

Exercise 9-19

Consider this function definition that takes a single number as the argument:

def square(n):
return n**2

What does it do? What does it return? What number does square(2) then represent?

Below, I have used it in some printed expressions. Make sure you understand what
each expression evaluates to. Make the explicit substitutions and reductions on paper
before you run it. Remember that we substitute a function call (like square(2)) for the
value it returns, just like a variable x substitutes for the value it points to.

print(square(3))
print(square(2 + 1))
print(square(2) * 2 + square(3))
print(square(square(2)))
print(square(2 * square(1) + 2))

Exercise 9-20

What does this function do? How many parameters does it have? How many state-
ments does the function have? What does the function print? Which value does it
return?

def power(a, b):
print("This function computes {}**{}".format(a, b))
return a**b

print(power(4, 2))

98

Try (possibly strange) variations of the code like the ones below better to understand
the contribution of each line of code. What is the difference between return and print?
What happens when Python gets to a return statement in a function? What happens
when the function does not have a return statement?

Variation 1:

def power(a, b):
print("This computes", a, "to the power of", b)
print(a**b)

result = power(4, 2)
print(result)

Variation 2:

def power(a, b):
print("This computes", a, "to the power of", b)
return a**b

result = power(4, 2)
print(result)

Variation 3:

def power(a, b):
print("This computes", a, "to the power of", b)
a**b

print(power(4, 2))

Variation 4:

def power(a, b):
return a**b
print("This computes", a, "to the power of", b)

print(power(4, 2))

99

Exercise 9-21

Define a function called diff, with two parameters, x and y. The function must return
the difference between the values of x and y.

Example:
def diff(x, y):

...

diff(8, 2) # should return 6
diff(-1, 2) # should return -3

Save the value returned from the function in a variable. Then, test if the function works
correctly by comparing the result to what you know is the true difference (using ==).

Exercise 9-22

Define a function called all_equal that takes five arguments and returns True if all five
arguments have the same value and False otherwise. The function should work with
any input, for example:

all_equal("Can", "Can", "Can", "Can", "Can")
all_equal(0, 0, 0, 0, 0)
all_equal(0.5, 0.5, 0.5, 0.5, 0.5)
all_equal(True, True, True, True, True)

Hint: You test equality with a == b. Now, think back to what you learned about logic.
Which operator can you use to test if a == b and b == c?

Exercise 9-23

Define a function called is_even, which takes one argument and returns True if (and
only if) this is an even number and False otherwise (remember the modulo opera-
tor?).

is_even(8) # should return True
is_even(3) # should return False

100

Exercise 9-24

Define a function called is_odd, which takes one argument and returns True if (and
only if) the argument is an odd number and False otherwise.

is_odd(8) # should return False
is_odd(3) # should return True

Can you complete this exercise using the is_even you defined in exercise 9-23? How?
Why is that a good idea?

Exercise 9-25

Here is a function that should return True if given an uppercase (English) vowel and
False otherwise:

def is_uppercase_vowel(c):
c == 'A' or c == 'E' or c == I or c == 'O' or c == 'U'

char = 'A'
if is_uppercase_vowel(char):

print(char, "is an uppercase vowel")
else:

print(char, "is NOT an uppercase vowel")

Now you can just type the code exactly as shown and run it. Do you get what you
expect? Does the code work? If not, try to figure out why. Try to print the value that
the function returns. Do you know if that gives you any hints about the cause of the
problem?

Exercise 9-26

Define a function called is_nucleotide_symbol, which takes one argument and returns
True if this is either A, C, G, T, a, c, g or t, and False in any other case.

Name your parameter something sensible like symbol.

is_nucleotide_symbol("A") # should return True
is_nucleotide_symbol("B") # should return False
is_nucleotide_symbol("Mogens") # should return False
is_nucleotide_symbol("") # should return False

101

Exercise 9-27

Define a function called is_base_pair which takes two parameters, base1, base2, and
returns True if base2 is the complementary of base1, and False otherwise.

is_base_pair("A", "G") # should return False
is_base_pair("A", "T") # should return True
is_base_pair("T", "A") # should return True
is_base_pair("Preben", "A") # should return False

Exercise 9-28

Did you find the bug in exercise 9-25? You were supposed to find that the function did
not have a return value. This makes the function return None by default. Do you think
the None value is considered true or false in an if-statement?

Exercise 9-29

Define a function called celcius2fahrenheit that converts from celsius to Fahrenheit.
You can do this because you know the linear relationship between the two. On Fig-
ure 9.1 you can see that the slope is 9 / 5 and the intercept is 32. The function should
have one parameter celsius. Inside the function, you should define the variables slope
and intercept and give them the appropriate values. Then you can calculate the con-
version to Celcius using these variables and return the result.

Exercise 9-30

Try to change your conversion function so it takes three arguments, corresponding to
celsius, slope and intercept so you can call it like this to convert 27 degrees celsius:
conversion(37, 9 / 5, 32). Now you have a function that can do any linear conversion
that you can put inside another function like this:

def celcius2fahrenheit(celsius):
return conversion(celsius, 9 / 5, 32)

Exercise 9-31

Now try to extend this to a different problem: It has been found that the height and
weight of a person are related by a linear equation with slope = 0.55 and intercept = -25.
Define a function called predict_weight which takes just one argument, the height of a
person, and returns the estimated weight of the person.

102

Figure 9.1: Temperature conversion

Exercise 9-32

By now you know that some of the words in your code have specific purposes. def
defines functions, return returns value from a function, and is a logical operator etc.
Here is a list of the ones you will see in this course: and, assert, break, continue def,
del, elif, else, False, for, from, if, import, in, is, not, or, pass, return, while, True,
None (you can see a full list here)

These words are reserved for their special purposes in Python and you will not be
allowed to assign values to them. Try this to see for yourself:

None = 4

or this:

and = 2

FAQ - Frequently Asked Questions

Q: Can function names be anything?
A: Just about. The rules that apply to variable names also apply to function names.

103

https://docs.python.org/3.0/reference/lexical_analysis.html#id8

Good function names are lower case with underscores (_) to separate words, like in the
examples above.

104

10 Values are objects

This chapter introduces the notion of an object, one of the most central aspects of Python. Once
you catch your breath, you will love that all Python values are objects.

Methods

In Python, a value like an integer or string not only holds data. It is also packaged with
a lot of useful functionality relevant to the particular type of value. When a value is
packaged with such relevant functionality and meta information, programmers call it
an object—and in Python, all values are objects.

The associated functionality comes in the form of methods. You can think of methods as
functions that are packaged together with the value. For example, string values have a
method called capitalize. Try it out:

x = "banana".capitalize()
print(x)

To call the method on the string value, you connect the string value and the method call
with a dot. So, to call a method on a value, you do the following:

1. Write the value (or a variable name that substitutes for a value).
2. Then write a ..
3. Then write the name of the method (like capitalize).
4. Then, write two parentheses to call the method. If the method takes any argu-

ments other than the value it belongs to, then you write those additional values
between the parentheses with commas in between, just as when you call a func-
tion.

You can see that the method call looks just like a function call, and in many ways, calling
a method works much like calling a function. The difference is that when we call a
function, we say: “Hey function, capitalize this string!”. When we call a method, we say:
“Hey string, capitalize yourself!”

So why do we need methods? Why do we need them when we have functions? It is
very handy to have some relevant and ready-to-use functionality packaged together
with the data it works on. You will start to appreciate that sooner than you think.

105

Methods are almost always used with variables. So remember to make any substitu-
tions and reductions required. When we put a method call after a variable like below,
the variable is first substituted for its value, and then the method is called on the value.
Consider the second line of this example:

x = "banana"
print(x.capitalize())

Here, x is first substituted by "banana" and then the method is called on that value, like
this: "banana".capitalize().

Now write and run these examples:

message = "Methods Are Cool"
print(message)

shout = message.upper()
print(shout)

whisper = message.lower()
print(whisper)

new_message = message.replace("Cool", "Fantastic")
print(new_message)

You can see what these methods do. For example: upper returns an uppercased copy of
the string.

Exercise 10-1

Write and run the following code. What do you think it does?

line = '\n\tSome text\n'
print(">{}<".format(line))

line = line.strip()
print(">{}<".format(line))

Make sure you do the substitution and reduction steps in your head. Be especially
careful about the third line of code. Also, what do you think the special \t character
is?

106

Exercise 10-2

The string methods you have tried so far have all returned a new string. Try this exam-
ple:

'ATGACGCGGA'.startswith('ATG')

and this

'ATGACGCGGA'.endswith('ATG')

What do the methods do, and what do they return?

Using the Python documentation

Now that you are well underway to becoming a programmer, you should know your
way around the Python documentation. Especially the part called the Python standard
library. There is a lot of details in there that we do not cover in this course. These are
mainly tools and techniques for writing more efficient, extensible, robust, and flexible
code. The parts we cover in this course are the minimal set that will allow you to write
a program that can do anything.

Exercise 10-3

There is a string method that returns a secret agent:

print('7'.zfill(3))

You can look it up in the Python documentation.

Exercise 10-4

Browse through all the string methods to get an impression of all the functionality that
is packaged with string objects.

107

https://docs.python.org/3
https://docs.python.org/3/library
https://docs.python.org/3/library
https://docs.python.org/3/library/stdtypes.html#str.zfill
https://docs.python.org/3/library/stdtypes.html#string-methods

String formatting

You have already tried string formatting in exercise 10-1. String formatting is a simple
but powerful technique that lets you generate pretty strings from pre-computed values.
You may have noticed that many decimals are shown every time we print a floating-
point number. It is not very pretty if you are only interested in two decimals. You use
the format method (surprise) to format a string. In its most straightforward use, format
replaces occurrences of {} with the arguments that are passed to it - like this:

taxon = "genus:{}, species:{}".format('Homo', 'sapiens')

Exercise 10-5

What happens if you try this?

question = "Was {} {} Swedish?".format('Carl', 'Linneaus')

and this?

question = "Was {} Swedish?".format('Carl', 'Linneaus')

and this?

question = "Was {} {} Swedish?".format('Carl Linneaus')

In the two last examples, the number of {} did not match the number of arguments to
format. What happens when there are too few and when there are too many?

Exercise 10-6

Consider this code:

s = "{} is larger than {}".format(4, 3)
print(s)

What will happen if you run this code? Write the code and see for yourself once you
think you know. If you were wrong, make sure you understand why.

108

Exercise 10-7

Consider this code:

language = 'Python'
invention = 'sliced bread'
s = '{} is the best thing since {}'.format(language, invention)
print(s)

What will happen if you run this code? Write the code and see for yourself once you
think you know. If you were wrong, make sure you understand why.

Exercise 10-8

Consider this code:

my_template = '{} is the best thing since {}'
language = 'Python'
print(my_template.format(language, 'sliced bread'))
print(my_template.format(language, 1900 + 89))

What will happen if you run this code? Do the substitution and reduction steps in your
head.

Exercise 10-9

Think back to exercise 5-3, where you calculated how many cookies you could buy for
30 kr. The bars are 7 kr. So your program looked something like this:

nr_bars = 30 / 7
print('I can buy', nr_bars, 'chocolate bars!')

and it ran like this: python chocolate.py

I can buy 4.285714285714286 chocolate bars!

String formatting lets you rewrite the program like this:

109

nr_bars = 30 / 7
message = "I can buy {} chocolate bars!".format(nr_bars)
print(message)

Try to replace {} with {:.2f}. format reads the stuff after the colon in each set of curly
brackets and uses it as directions for formatting the value it inserts. Try it out and see
what happens if you change the number 2 to 3, 4, 5 or 10.

Exercise 10-10

See if you can find the documentation for the format function in the Python documen-
tation. It can do wondrous things, for this course we will only try to control the number
of digits and padding with spaces. Look at the examples below. Maybe you can figure
out how it works.

pi = 3.14159265359
print("*{}*".format(pi))
print("*{:.3f}*".format(pi))
print("*{:.6f}*".format(pi))
print("*{:>5.3f}*".format(pi))
print("*{:>10.3f}*".format(pi))

Exercise 10-11

This is bonus info rather than an actual exercise. How do you think Python can figure
out that adding strings is supposed to work differently than adding numbers? Remem-
ber that '1' + '2' is '12' not 3. The answer is that all values you can add with the +
operator have a secret method called __add__ that defines how adding works for that
type of value:

s1 = "11"
s2 = "22"
n1 = 11
n2 = 22
print(s1 + s2)
print(s1.__add__(s2))
print(n1 + n2)
print(n1.__add__(n2))

This is one of many examples of how objects allow Python to implement functionality
that fits each value type. This was to show how Python does this. Like yellow and black

110

https://docs.python.org/3
https://docs.python.org/3

stripes in nature means “don’t touch me!” – double underscores (__) is Python’s way
of saying “do not use this!”. You are supposed to use the + operator, not the __add__
method.

Indexing and slicing strings

Another feature of string objects is that they allow you to extract individual parts of the
string.

Each character in a string is identified by its index in the string. To access a character in
a list, you write brackets after the string. Between those brackets, you specify the index
of the character you want. The first character has an index of 0; the second has an index
of 1, and so on.

codon = 'ATG'
print("first base is", codon[0])
print("second base is", codon[1])
print("third base is", codon[2])

You may wonder why the index of the first character is zero and not one. That is simply
the convention in programming and is so for good reason. Over time you will begin to
find this useful rather than annoying. You should think of the index as the offset from
the start of the string.

That also means that the index is not the length of the string but the length minus one:

amino_acids = 'ARNDCQEGHILKMFPSTWYV'
last_index = len(amino_acids)-1
print("Last amino acid is", amino_acids[last_index])

If you want a sub-string from a larger string (we call that a slice), you specify a start
index and an end index separated by a colon:

print(amino_acids[1:4])

When you run that, you can see that amino_acids[1:4] is substituted for 'RND', so the
slicing operation produces a sub-string of amino_acids. You may wonder why the value
at index 4 is not in the resulting sub-string. That is another programming convention:
intervals are ends exclusive. So when you specify an interval with a start index of 1 and
an end index of 4, it represents all the characters starting from 1 and up to, but not
including, 4. So, the slice 1:4 corresponds to the characters at indexes 1, 2, and 3. The
reason programmers handle intervals in this way is that it makes it easier to write clear
and simple code as you will see in the exercises.

111

Exercise 10-12

What does this expression reduce to?

"Futterwacken"[7]

Exercise 10-13

What is printed here? Do all the substitution and reduction steps and compare to the
exercise above.

s = "Futterwacken"
print(s[7])

Exercise 10-14

What is printed here? Do all the substitution and reduction steps – and do it twice. Next
week you will be happy you did.

dna = 'TGAC'
i = 0
print(dna[i])
i = 1
print(dna[i])
i = 2
print(dna[i])

Exercise 10-15

What do you think happens here? Make up your mind and try out the code below:

s = "Futterwacken"
s[6] = 'W'

Did you see that coming? Strings are immutable, which means that you cannot change
them once you have made them. If you want "FutterWacken" you need to produce a
new string with that value. Try to figure out how to do that with the replace method
of strings.

112

https://docs.python.org/3/library/stdtypes.html#string-methods

Exercise 10-16

When you do not specify a slice’s start and/or end, Python will assume sensible de-
faults for the start and end indexes. What do you think they are? Make up your mind
and try out the code below:

s = 'abcdefghijklmnopqrstuvxyz'
print(s[:11])
print(s[11:])
print(s[:])

Exercise 10-17

Find the documentation for how the slicing of strings works.

Exercise 10-18

What do you think happens when you specify an index that does not correspond to a
value in the list:

alphabet = 'abcdefghijklmnopqrstuvxyz'
print(alphabet[99])

Read and make sure you understand the error message. You can try to Google the error
message.

Exercise 10-19

Do you think you also get an error when you specify a slice where the end is too high?
Try it out:

alphabet = 'abcdefghijklmnopqrstuvxyz'
print(alphabet[13:99])

and this:

alphabet = 'abcdefghijklmnopqrstuvxyz'
print(alphabet[10000:10007])

I guess that is worth remembering.

113

Exercise 10-20

Which character in a string named alphabet does this expression reduce to?

alphabet[len(alphabet)-1]

Exercise 10-21

Because intervals are “ends exclusive” ,we can compute the length of a slice as end -
start:

dna = "ATGAGGTCAAG"
start = 1
end = 4
print("{} has length {}".format(dna[start:end], end-start))

Figure out what this code would look like if ends were included in intervals.

Exercise 10-22

Another advantage of “ends exclusive” intervals is that you only need one index to
split a string in two:

s = 'Banana'
idx = 3
beginning = s[:idx]
end = s[idx:]
print(beginning + end)

Figure out what indexes you would need to use to split a sequence in two if ends were
included in intervals.

Exercise 10-23

Did you look up the details of how slicing works in exercise 10-17? Then you should
be able to explain what happens here:

s = 'zyxvutsrqponmlkjihgfedcba'
print(s[::-1])

114

General exercises

Exercise 10-24

Will this print Bananas rule!? Do all the substitutions and reductions.

if 'na' * 2 == "Banana"[2:]:
print("Bananas rule!")

Exercise 10-25

Will this print Bananas rule!? Do all the substitutions and reductions.

if "{}s".format('Banana'[1:].capitalize()) == 'Ananas':
print("Bananas rule!")

Exercise 10-26

Write a function called even_string that takes a string argument and returns True if the
length of the string is an even number and False otherwise. E.g. even_string('Pear')
should return True and even_string('Apple') should return False (remember the
modulo operator?).

Exercise 10-27

Look at the code below and decide what is printed at the end. Then, write the code and
test your prediction. If you are wrong, figure out why by revisiting the chapter about
functions.

def enigma(x):
if x == 4:

return x

result = enigma(5)
print(result)

115

Exercise 10-28

Inspect the code below and determine why it does not print that you are a super star.
Test the function using various inputs and identify the mistake.

def even_number(x):
if x % 2:

return False

if even_number(4):
print('You are a super star!')

116

11 Lists of things

This chapter is about lists and dictionaries that are Python values that can contain other Python
values. Lists and dictionaries let you build relationships between values, which is what data
structures represent.

Lists

For many kinds of data, the order of things is important. Just like the order of characters
is important for the meaning of the text in a string, we sometimes want to specify the
order of other things because the relative order of items in the list has some meaning. It
could be a grocery list where you have listed the things to buy in the order you get to
them in the supermarket. This is where Python lists are helpful. When you print a list,
it nicely shows all the values it contains.

grocery_list = ["salad", "canned beans", "milk", 'beer', 'candy']
print(grocery_list)

Unlike strings that can only store the order of characters, lists can contain any kind of
values, and you can mix different types of values in any way you like. Here is a list that
contains an integer, a boolean, a string, and a list:

mixed_list = [42, True, 'programming', [1, 2, 3]]

By now, you have probably guessed you will make a list with two square brackets.
Between them, you can put values with commas in between. A list is a container of
other values, and the value of the list itself does not depend on the values it contains.
This makes sense. Otherwise, an empty list would not have a value:

my_list = []

You can add single values to the end of a list using the append method of lists. Try it
out:

117

desserts = []
print(desserts)
desserts.append('Crepe suzette')
print(desserts)
desserts.append('Tiramisu')
print(desserts)
desserts.append('Creme brulee')
print(desserts)

If you have a list you want to add to the end of another list, you use the extend
method:

cheeses = ['Gorgonzola', 'Emmentaler', 'Camembert']
desserts.extend(cheeses)
print(desserts)

Notice how append and extend modifies the existing list instead of producing a new list
with the added element.

Exercise 11-1

Do you think this will work?

cheeses = ['Gorgonzola',
'Emmentaler',
'Camembert']

print(cheeses)

Surprised? Code inside parentheses, brackets, and braces can span several lines, some-
times making your code easier to read.

Exercise 11-2

You use the’ in’ operator to test if a value is in a list. Try this:

print('Tiramisu' in desserts)
print('Meatloaf' in desserts)

118

Exercise 11-3

You can concatenate two lists to produce a new joined list. Make sure you figure out
how this works before you try it. Then, experiment with changing the lists. Can you
concatenate two empty lists?

some_list = [1, 2, 3]
another_list = [7, 8, 9]
merged_list = some_list + another_list
print(merged_list)

This is yet another example of how the functionality of Python objects lets them “know”
how to behave under different circumstances, such as when adding two objects (see
exercise 10-11).

Exercise 11-4

What do you think is printed here? Make sure you figure out how you think this works
before you try it out. What does the append method return?

my_list = []
x = my_list.append(7)
print(x)
print(my_list)

Indexing and slicing lists

Now you know how to make lists, but to work with the values in lists, you must also
know how to access the individual values a list contains. Fortunately, indexing lists
work just like indexing strings: Each value in a list is identified by an index exactly like
each character in a string:

numbers = [7, 4, 6, 2, 8, 1]
print("first value is", numbers[0])
print("second value is", numbers[1])
print("third value is", numbers[2])

Notice that the function len can also compute the length of a list. So you also get the
last value in a list like this:

119

numbers = [7, 4, 6, 2, 8, 1]
last_index = len(numbers)-1
print("Last element is", numbers[last_index])

If you want a sub-list of values from a list (we also call that a slice), you specify a start
index and an end index separated by a colon, just like with strings:

print(numbers[1:4])

When you run that, you can see that numbers[1:4] is substituted for [4, 6, 2], so the
slicing operation produces a new list of the specified values.

Exercise 11-5

What do these two expressions reduce to?

[11, 12, 13, 14, 15, 16, 17][2]

Exercise 11-6

What is printed here? Do all the substitution and reduction steps and compare them to
the exercise above.

l = [11, 12, 13, 14, 15, 16, 17]
print(l[2])

Exercise 11-7

What is printed here? Do all the substitution and reduction steps — and do them twice.
Next week, you will be happy you did.

numbers = [1,2,3]
i = 0
print(number[i])
i = 1
print(number[i])
i = 2
print(number[i])

120

Exercise 11-8

What do you think happens here? Make up your mind and try out the code below:

l = [11, 12, 13, 14, 15, 16, 17]
l[4] = "Donald"
print(l)

Were you surprised by what happened? Compare to exercise 10-15. Lists are not im-
mutable like strings, and you can replace values by assigning a new value to an index
in the list.

Exercise 11-9

With your knowledge of slicing, what do you think is printed below:

l = [11, 12, 13, 14, 15, 16, 17]
print(l[:3])
print(l[3:])
print(l[:])

Exercise 11-10

What do you think happens when you specify an index that does not correspond to a
value in the list:

l = [11, 12, 13, 14, 15, 16, 17]
print(l[7])

Read and understand the error message. Does it ring a bell?

Exercise 11-11

Do you also get an error when you specify a slice where the end is too high? Try it
out:

l = [11, 12, 13, 14, 15, 16, 17]
print(l[4:99])

I guess that is also worth remembering.

121

Exercise 11-12

Which value in a list named l does this expression reduce to?

l[len(l)-1]

Exercise 11-13

If you do not like Emmentaler, you can delete it. What does the del keyword do?

cheeses = ['Gorgonzola', 'Emmentaler', 'Camembert']
print(cheeses)
del cheeses[1]
print(cheeses)

Exercise 11-14

Because intervals are “ends exclusive,” we can compute the length of a slice as end -
start:

l = [7, 4, 6, 2, 8, 1]
start = 1
end = 4
print("{} has length {}".format(l[start:end], end-start))

Consider what this code would look like if ends were included in intervals.

Exercise 11-15

Another advantage of “ends exclusive” intervals is that you only need one index to
split a list in two:

numbers = [1, 2, 3, 4, 5, 6]
i = 3
beginning = numbers[:i]
end = numbers[i:]
print(beginning + end)

If ends were included in intervals, this would be more complex.

122

Exercise 11-16

Do all the substitution and reduction steps in your head (or on paper) before you write
any of the following code. Think carefully and decide what you think will be printed
below. Remember that the value of a list is a container that holds other values in it. Then,
write the code and see if you are right. If you were not, figure out what led you to the
wrong conclusion.

x = 'A'
y = 'B'
z = 'C'
lst = [x, y, z]
print(lst)

x = 'Preben'
print(lst) # what is printed here?

lst[0] = 'Mogens'
print(lst) # what is printed here?

Exercise 11-17

Do you remember this trick from string slicing?

l = [1, 2, 3, 4, 5]
print(l[::-1])

Exercise 11-18

You can produce a list by splitting a long string into smaller parts. Think: “Hey string,
split yourself on this smaller string”. Try these variations to figure out how it works.

"Homo sapiens neanderthalensis".split(" ")
"Homo sapiens neanderthalensis".split('en')
'ATGCTCGTAACGACACTGCACTACTACAATAG'.split('')
"1, 2, 3, 5, 3, 2, 5, 3".split(', ')
"1,2,3,5,3,2,5,3".split(',')
'ATGCTCGTAACGACACTGCACTACTACAATAG'.split()
"Homo sapiens neanderthalensis".split()

Notice that the method has a default behavior when no argument is passed to it.

123

Exercise 11-19

You can produce a string by joining the elements of a list (if all the elements are strings,
of course). Think: “Hey string, put yourself between all the strings in this list”.

"-".join(['Homo', 'sapiens', 'neanderthalensis'])
"...".join(['Homo', 'sapiens', 'neanderthalensis'])
"".join(['A', 'T', 'G'])

Notice how you can join something on an empty string. This is a very useful technique
to turn a list of characters into a string.

General exercises

What does this expression reduce to? 'aaaaa', 'BaBaBa', or 'Banan'. Make up your
mind, and then run the expression to check.

'a'.join('Banana'.split('a')[:3] * 4)[-5:]

124

12 Pairs of things

This chapter is about dictionaries that, like lists, is another Python value that can contain other
Python values. Dictionaries dictionaries let you build relationships between values, which is
what data structures represent.

Dictionaries

Lists are useful for storing values when the order of the values is important, but they
have one drawback: you can only access a value in a list using its index.

A dictionary called dict in Python, is a much more flexible data type. Like a list, a dic-
tionary is a container for other values, but dictionaries do not store values in sequence.
They work more like a database that lets you store individual values. When you store
a value, you assign it to a key that you can use to access the stored value. Now, create
your first dictionary:

person = {'name': 'Robert Redford', 'height': 179, 'job': 'Actor'}

This dictionary has three values ('Actor', 'Robert Redford' and 179) and each value
is associated with a key. Here 'height' is the key for the value 179. So, when defining
a dictionary, you should note the following:

1. You make a dictionary using braces.
2. you put key-value pairs separated by a colon between your braces.
3. Commas separate the key-value pairs.
4. To make an empty dictionary, write the braces with nothing between them: {}.

To access a value in the dictionary, you put its key in square brackets after the dictio-
nary:

"{} is a {} cm {}".format(person['name'], person['height'], person['job'])

Here we used strings as keys, but you can also use many types of values as keys (Python
will give you an error if you try to use a type that is not allowed):

125

misc_dict = {42: "Meaning of life", "pi": 3.14159, True: 7}

A dictionary stores key-value pairs but does not keep track of their order. So, when you
print a dictionary, the order of the key-value pairs is arbitrary.

If you have a dictionary, you can add key-value pairs in this way:

person['job'] = 'Retired'
person['hair'] = 'uniquely combed'
print(person)

Notice that if you assign a value (71) to a key that is already in the dictionary ('age'),
then the old value (70) is replaced.

Exercise 12-1

What does this expression evaluate to?

{'name': 'Robert Redford', 'height': 179, 'job': 'Actor'}['name']

Exercise 12-2

Assuming the definition of the person dictionary above, what does this expression eval-
uate? Compare this to the expression in the previous exercise.

person['name']

Exercise 12-3

The in operator also works with dictionaries. Look at what these expressions reduce to
and then try to figure out what in does when applied to a dictionary:

'name' in person
'height' in person
'job' in person
84 in person
'Actor' in person
'Robert Redford' in person

126

Exercise 12-4

Write and run this code with different values of key and read any error messages.

key = 3
key = 'banana'
key = 3.14159
key = True
key = {}
key = []
d = {}
d[key] = 7

Are any of the values not allowed as keys?

Exercise 12-5

Do you think this will work?

person = {'name': 'Robert Redford',
'height': 179,
'job': 'Actor'}

print(person)

General exercises

Start by making dictionaries for (some of) the Trump family:

donald = {'name': 'Donald Trump', 'age': 70, 'job': 'President' }
melania = {'name': 'Melania Trump', 'age': 70, 'job': 'First lady' }
tiffany = {'name': 'Tiffany Trump', 'age': 23, 'job': 'Internet personality' }
ivanka = {'name': 'Ivanka Trump', 'age': 35, 'job': 'Top aide' }

Exercise 12-6

What do you think the following code produces? Do all of the substitution and reduc-
tion steps in your head, and only then try out the code.

127

donald['child'] = tiffany
melania['husband'] = donald

print(melania)
print(melania['husband']['child'])

Exercise 12-7

A dictionary can contain any kind of Python values, even lists or dictionaries. Consider
the code below, where we add a list of ex-wives to the Trump persona. Can you see
why we need to check the 'ex-wives' key before we add it to the list of ex-wives?

donald = {'name': 'Donald Trump', 'age': 70, 'job': 'President' }

if 'ex-wives' not in donald:
donald['ex-wives'] = []

donald['ex-wives'].append('Marla Maples')
donald['ex-wives'].append('Ivana Trump')

print(donald)

Exercise 12-8

In case you wonder what the type of value a list is, or a dictionary, try this:

print("A list has type:", type([]))
print("A dictionary has type:", type({}))

Now the types list and dict are your friends too.

Exercise 12-9

Lists can also contain any type of value. Consider this example. What do you think the
following code produces? Do all the substitution and reduction steps in your head, and
only then try out the code.

trump_family = [donald, melania, ivanka, tiffany]
print(trump_family)
print(trump_family[1]['job'])

128

Exercise 12-10

Write and run this code

amino_acids = {}
amino_acids['ATG'] = 'met'
amino_acids['TCT'] = 'ser'
amino_acids['TAC'] = 'tyr'

codon = 'TCT'
print("{} encodes {}".format(codon, amino_acids[codon]))

“

”

You have probably noticed that the interpretation of length is different for
each type of value. In a string, it is the number of characters; in a list, it
is the number of values in the list; in a dictionary, it is the number of key-
value pairs. How do you think Python knows which length interpretation
to use when the len function is called? This is where objects shine. len(x)
returns the value that x.__len__() returns. So the len function is defined
roughly like this:

def len(x):
return x.__len__()

Similarly, the in operator calls a secret __contains__ method.

129

13 Grouping values

Tuples

A tuple is a sequence of values, just like a list. However, unlike a list, the elements of a
tuple can not be changed. You cannot append to a tuple, either. Once a tuple is made, it
is immutable (or unchangeable). To make a tuple, you just use round brackets instead
of square brackets:

fruits = ("apple", "banana", "cherry")

It may seem strange that Python has both tuples and lists. One reason is that tuples
are more efficient, whereas lists are more flexible. We will not use tuples often, but you
must know what they are.

You can do most of the operations on a tuple that you can also do on a list. The following
exercises should be easy if you remember how to do the same thing on lists:

Exercise 13-1

Find the number of elements in the fruits tuple using the len function.

Exercise 13-2

Extract the second element of the fruits tuple ("banana") using indexing.

Exercise 13-3

Try to change the second element of the fruits tuple to "apple" and see what happens.
It should be something like this:

Traceback (most recent call last):
File "script.py", line 2, in <module>

fruits[3] = "apple"
TypeError: 'tuple' object does not support item assignment

131

You cannot change elements of a tuple because they are immutable (once made, they
stay that way).

Tuple assignment

Python lets you assign a tuple of values to a tuple of variables like this:

father, mother, son = ("Donald", "Ivana", "Eric")

It does the same as the following three assignments:

father = "Donald"
mother = "Ivana"
son = "Eric"

When a tuple is made, the values are “packed” in sequence:

family = ("Donald", "Ivana", "Eric")

Using the same analogy, values can be “unpacked” using tuple assignment:

father, mother, son = family

The only requirement is that the number of variables equals the number of values in
the tuple.

Once in a while, it is useful to swap the values of two variables. With conventional
assignment statements, we have to use a temporary variable. For example, to swap a
and b:

tmp = a
a = b
b = tmp

Exercise 13-4

Try this and read the error message:

132

family = ("Donald", "Ivana", "Eric")
father, mother = family

Exercise 13-5

Try this and read the error message:

family = ("Donald", "Ivana", "Eric")
father, mother, son, daughter = family

Compare to the error message in the previous exercise.

Exercise 13-6

Say you want to swap the values of two variables, a and b. To do that, you would need
to keep one of the values in an extra variable like this:

temp = a
a = b
b = temp

Using what you have learned in this chapter, can you devise a simple and pretty way
of swapping a and b in one statement? It may occur to you before you realize how
it works, so make sure you can connect your solution to the rules of tuples and tuple
assignment.

133

14 Iterating values

This chapter is about how you repeat the same code for many different values – and the many
reasons why this is useful.

The for-loop

Programs often need to do repetitive things. Consider this example below, where x is
assigned a value that is then printed:

x = 1
print(x)
x = 5
print(x)
x = 3
print(x)
x = 7
print(x)

You can see that we do the same thing four times, with the only difference being that
the variable x takes a new value each time. Now, carefully write the alternative version
below and compare what is printed to what was printed in the above example.

for x in [1, 5, 3, 7]:
print(x)

It should be the same. What you just wrote is called a for-loop. It is called a for-loop
because it does something for each of many values – in this case, for each value in our
list.

The statements nested under the for-loop are run as many times as there are values
in our list, and every time they are run, x is assigned a new value. The first time the
statements are run, x is assigned the first value in the list. The second time they run x,
the second value is assigned to the list. This continues until x has been assigned all the
values in the list.

The semantics of a for-loop is as follows:

135

1. First, you write for.
2. Then, you write the name of the variable that will be assigned a new value for

each iteration of the loop (x in the above case).
3. Then you write in.
4. The,n you write the name of an iterable or an expression that reduces to one. In

the above case, it was the list [1, 5, 3, 7].
5. The statements nested under the for loop are indented with four spaces, just like

with if-statements. These statements are executed once for every value in the
iterable.

What is an iterable, you may ask? It is any Python value that knows how to serve one
value at a time until there are none left. Only objects with an __iter__ method can
do this. You will get an error if you try to iterate over a value that does not have an
__iter__ method. Try the code below and see how Python complains that “ ‘int’ object
is not iterable”:

for x in 4:
print(x)

Try these variations of the for-loop above and notice how the rules 1-5 apply in each
case:

for x in [1, 5, 3, 7]:
print(x)

list_of_numbers = [1, 5, 3, 7]
for x in list_of_numbers:

print(x)

for x in [1, 5] + [3, 7]:
print(x)

In each case, the expression after in reduces to the value [1, 5, 3, 7], which then
serves as the iterable.

It is not only lists that are iterable. Strings are, too. Their ‘iter’ method of a string tells
it that it should serve one character at a time. Try this:

for character in 'banana':
print(character)

Neat, right?

136

In programming, you often need to iterate over integer values and sometimes quite
a few (like the 250 million bases of the human chromosome one). It would be quite
annoying if you had to manually make long lists of integers, so Python provides a
built-in function called range that helps you out. It returns a special iterator value that
lets you iterate over a specified range of numbers. Try the two examples below and
compare what is printed:

total = 0
for number in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

total += number
print(total)

total = 0
for number in range(10):

total += number
print(total)

You can see that using range works just like using a list of numbers, but the cool thing
about the range is that it does not return a list. It just serves one number at a time until it
is done. This is also why you will not see a list if you try to print what range returns:

number_iterator = range(10)
print(number_iterator)

The range function needs three values to know which values to iterate over: “start”,
“end” and “step”. It will assume sensible defaults if you do not give it all three argu-
ments. Try this:

for i in range(0, 10, 1):
print(i)

for i in range(0, 10):
print(i)

for i in range(10):
print(i)

You can see that the first and last arguments default to 0 and 1. If you give it two argu-
ments, it will assume that they are “start” and “end”. If you only give it one argument,
it will assume that it is the “end”.

137

Exercise 14-1

What do you think the third argument to range specifies? Try these variations and see
if you can figure it out:

for i in range(0, 10, 1):
print(i)

for i in range(0, 10, 2):
print(i)

for i in range(0, 10, 3):
print(i)

Check the documentation once you have decided.

Exercise 14-2

What will happen here:

for x in []:
print(x)

and here:

for x in range(0):
print(x)

and here:

for x in range(10, 10):
print(x)

Exercise 14-3

The two examples below print the same. Make sure you understand why. Write and
experiment with the code on your own.

138

https://docs.python.org/3/library/stdtypes.html#range

list_of_words = ['one', 'two', 'three']

example 1
for word in list_of_words:

print(word)

example 2
list_length = len(list_of_words)
for index in range(list_length):

print(list_of_words[index])

Exercise 14-4

Finish the code below so all the even numbers go into one list, and all the odd numbers
go into the other (hint: remember the modulo operator?)

numbers = [4, 9, 6, 7, 4, 5, 3, 2, 6]
even = []
odd = []
for n in numbers:

your code here ...

Exercise 14-5

You can put any statements under the for loop. Here, it includes an if-statement that
lets you generate a list of all the a characters in banana (in case you need that).

result = []
fruit = 'banana'
for character in fruit:

if character == 'a':
result.append(character)

print(result)

Now change the code so you instead get the indexes of the ‘a’ characters: [1, 3, 5].
Here are some hints:

1. You need a for-loop over a list of numbers.
2. range(len(fruit)) may be relevant numbers :-).
3. fruit[1] substitutes for 'a'.

139

Exercise 14-6

Imagine you want to throw a big party and have rented a place with space for 100
people. Now, you want to start inviting people. What kind of error do you get here,
and why?

friends = ["Mogens", "Preben", "Berit"]
invited = []
for index in range(100):

invited.append(friends[index])

Exercise 14-7

You can also put a for loop under another for loop, and the rules for each for loop
are the same as those explained above. The statements nested under the for loop are
indented with four spaces, just like with if statements. These statements are executed
once for every value in the iterable. Think carefully about what you think is printed in
the example below before you try it out.

for i in range(3):
for j in range(3):

print(i, j)

Make sure you understand i, j pairs are printed in the order they are.

140

15 Working with files

This chapter covers the bare necessities of making your program read data from a file on your
computer and how to create a file to write results.

Writing files

To interact with a file on your hard disk, you need to know its name and whether you
want to write to it or read from it. Then, you can use the built-in function open to
create a file object that lets you read or write to that file. The open function takes two
arguments: The first is a string, which gives the file’s name. The second argument is
also a string and should be 'w' for “write” if you want to write to the file or 'r' for
“read” if you are going to read from the file. To keep things simple, we will assume that
the file you want to open is always in the same folder (directory) as the Python script
that calls the open function.

Exercise 15-1

Try to write the code below and run it:

f = open('workfile.txt', 'w')
f.write("First line\n")
f.write("Second line\n")
f.close()

Now open the workfile.txt in VScode and see what is in it now. It should contain:

First line
Second line

Let’s break down what happened:

1. You used the open built-in function to open a file called “workfile.txt” in writing
mode using the 'w' as the second argument.

141

2. You then wrote the string "First line\n" to the file using the write method of
the file object.

3. You wrote another string "Second line\n" to the file using the write method of
the file object.

4. You closed the file using the close method of the file object.

Note that if you open a file for writing, a file with that name is created. If a file of that
name already exists, it is overwritten.

Exercise 15-2

Close workfile.txt in VScode again and change your program above to this (removing
the \n characters):

f = open('workfile.txt', 'w')
f.write("First line")
f.write("Second line")
f.close()

What do you think the content of workfile.txt is now? Decide before you open work-
file.txt in VScode again and have a look. What do you think the \n character repre-
sents?

Exercise 15-3

Close workfile.txt in VScode and change your program above to this:

f = open('workfile.txt', 'w')
f.write("First line\nSecond line\n")
f.close()

Can you see how that is equivalent to what you did before? Open workfile.txt in VScode
again and have a look.

Exercise 15-4

You can also make print write to a file instead of the terminal. That way, your output
will end up in the file instead of the terminal. To make print write to a file, you need
to use print’s file keyword argument to tell print which file to write to. The argument
must be an object that represents the file you want to write to (file=f below). Try to
write the code below and run it:

142

f = open('workfile.txt', 'w')
print("First line", file=f)
print("Second line, file=f")
f.close()

Compare the code to that in exercise 15-1. Notice how the strings we print end with a
newline character \n. This is because the default behavior for print is to add a new line
to the end of what it prints—just like when you print to the terminal.

Reading files

When you want to read a from an existing file, you give the open function the name of
that file and specify 'r' for reading as a second argument. If the file you name does not
exist, Python will tell you it does not exist (it is nice like that). Before you head into the
rest of this section, make sure you redo exercise 15-1 so the content of workfile.txt is:

First line
Second line

Exercise 15-5

f = open('workfile.txt', 'r')
file_content = f.read()
print(file_content)
f.close()

Let’s break down what happened:

1. You used the open built-in function to open a file called workfile.txt in reading
mode using the 'r' as the second argument.

2. You then read the file’s content using the read method, which returns the contents
as a string.

3. You printed the string.
4. You closed the file using the close method of the file object.

143

Exercise 15-6

Try to read from the file after you close it:

f = open('workfile', 'r')
f.close()
file_content = f.read()

Do you get an error? Which one? Do you understand why?

Exercise 15-7

You can use the readline method to read one line at a time. What do you think happens
if you run this code:

f = open('workfile.txt', 'r')
line = f.readline()
print(line)
line = f.readline()
print(line)
line = f.readline()
print(line)

Once you decide, try it out. What is printed in the last print statement? The thing is,
the file object keeps track of how much of the file it has read. Once it ends, you can read
as much as you like- nothing is left. If you want to start reading from the top of the file,
you can close it and open it again. Try to insert the following two statements at various
places in the code above and see what happens.

f.close()
f = open('workfile.txt', 'r')

Exercise 15-8

Look at the code below and figure out for yourself what it does:

input_file = open('workfile.txt', 'r')
output_file = open('results.txt', 'w')

for line in input_file:
line = line.upper()
output_file.write(line)

144

Then, run it and open results.txt in VScode and see what it produced.

Were you surprised that the file object can be an iterator in a for-loop? Just like stings
can iterate over characters, lists can iterate over values, dictionaries can iterate over
keys, and file objects can iterate over the lines in the file.

Try to modify your code to use the print function instead of the write method (see
exercise 15-4).

General exercises

Exercise 15-9

Write a function read_file that takes the name of a file as an argument. The function
should read the content and return it. Like:

content_of_file = read_file('some_file.txt')

Exercise 15-10

Write a function that takes the name of two files as arguments. The file should read the
content of the first file and write it to the second file.

copy_file('some_file.txt', 'other_file.txt')

145

16 Structuring data

This section will further train your ability to create such data structures using iteration.
Data structures in Python are fundamental tools that allow you to organize, store, and
manipulate data effectively. They provide a way to represent and manage data in a
structured and organized manner, making it easier to perform various operations on the
data. Python offers a variety of built-in data structures, such as lists and dictionaries,
with different properties that are useful for different needs. Sometimes, a single list
or dictionary is all you need. Still, sometimes you need to combine many lists and
dictionaries to make an elaborate data structure. As your programming skills progress,
you will find that mastering the use of different data structures is crucial for becoming
a proficient Python programmer.

Exercise 16-1

Imagine you want to count how many times each nucleotide appears in a DNA string
like this: 'ATGCCGATTAA'. One way to proceed with an account of this is by using a
dictionary where the keys represent the different values we want to count (in this case
'A', 'T', 'C' and 'G'). The value associated with each key is the number of times we
have seen that key (nucleotide). So, we want to end up with a dictionary like this one
(not necessarily with key-value pairs in this order):

{'G': 2, 'C': 2, 'T': 3, 'A': 4}

Remind yourself how you assign a value to an existing key in a dictionary. Here is some
code to get you going:

dna = 'ATGCCGATTAA'
counts = {'G': 0, 'C': 0, 'T': 0, 'A': 0}
for base in dna:

Your code here...

147

Exercise 16-2

In exercise 16-1 we started by initializing a dictionary with a key for each nucleotide and
the number zero for each key to show that we had not seen any of those nucleotides
yet. Then we iterated over the values we wanted to count using the for-loop. This
approach of cause only works if know which values we will encounter in the iteration.
When counting nucleotides, this works because we know there are only four different
nucleotides.

Often, however, we are faced with one or both of the following problems:

• The number of different values to count is very large. If we were to count English
words, we would have to initialize a dictionary with more than 170.000 key-value
pairs (which would be somewhat impractical). If we were to count numbers, this
would be impossible (as there are infinitely many of those).

• We do not know what values we are going to count. It goes without saying that
we can only initialize a dictionary with keys if we know what they are.

We can solve this problem by only adding keys for the values we see in the iteration. To
do this, we need to change our approach from before in two ways:

1. We start with an empty dictionary.
2. For every value we iterate over, we check if that value is a key in our dictionary.

If it is not, then we need to add it and pair it with the value 0. You can test if a key
is not in a dictionary using the not in operator:

if number not in counts:
counts[number] = 0

Now use these hints to complete the code below so that it counts how many times each
number appears in number_list.

counts = {}
number_list = [13, 51, 3, 51, 6, 42, 3]
for number in number_list:

Your code here...

When you are done you should have a dictionary like this (possibly with key-value
pairs in a different order):

{3: 2, 42: 1, 51: 2, 13: 1, 6: 1}

148

Exercise 16-3

The counting technique you developed in exercise 16-2 lets you count pretty much any-
thing that can be a key in a dictionary. Try using the same approach to count the number
of each thing in this list:

stuff = ['sofa', 42, 42, 3.14159, 'sofa', 'Dragon']

Exercise 16-4

Instead of counting values, we sometimes need to split the values we iterate over into
categories. Here, we build a dictionary where the keys are the first letter of each word
we iterate over, and the value associated with each key is a list of all the words that start
with that letter. So, if we iterate over the words in this list:

names = ['apricot', 'banana', 'ananas', 'apple', 'cherry']

We should end up with this dictionary (not necessarily with key-value pairs in that
order):

{'c': ['cherry'], 'a': ['apricot', 'ananas', 'apple'], 'b': ['banana']}

Now, figure out how to reorder and indent the statements below to produce code that
performs this task:

names = ['apricot', 'banana', 'ananas', 'apple', 'cherry']
words[first_letter].append(fruit)
first_letter = fruit[0]
for fruit in names:
words = {'a': [], 'b': [], 'c': []}

Exercise 16-5

Produce the same dictionary as in exercise 16-4 by reordering and indenting the follow-
ing statements:

149

first_letter = fruit[0]
words = {}
words[first_letter].append(fruit)
if first_letter not in words:
names = ['apricot', 'banana', 'ananas', 'apple', 'cherry']
words[first_letter] = []
for fruit in names:

Compare the solution to that in exercise 16-4. How is it different? Is it more generic?
How does the difference relate to the difference between exercise 16-1 and exercise 16-
2?

Exercise 16-6

Look at this code and decide for yourself what will be printed. Do we greet one person
in three languages first, or do we greet all people in one language first? Then, try it out
to see if you were right.

greetings = ['Hi', 'Hola', 'Ciao']
names = ['Mogens', 'Preben', 'Henning']
for greeting in greetings:

for name in names:
print(greeting, name)

Exercise 16-7

Now consider the code below. How is it different from the code in exercise 16-6? How
does that alter the order of what is printed?

greetings = ['Hi', 'Hola', 'Ciao']
names = ['Mogens', 'Preben', 'Henning']
for name in names:

for greeting in greetings:
print(greeting, name)

Exercise 16-8

Decide what you think the code below does and why you think so. Do every step in your
head, including all the substitutions and reductions. The,n write the code carefully and
run it.

150

nr_list = [10, 20, 30]
combinations = []
for a in nr_list:

for b in nr_list:
pair = [a, b]
combinations.append(pair)

The combinations list becomes:

[[10, 10], [10, 20], [10, 30],
[20, 10], [20, 20], [20, 30],
[30, 10], [30, 20], [30, 30]]

Here, I broke over three lines to make it fit on the page. You should print your own
combinations list to ensure you got the code right.

Exercise 16-9

The code in exercise 16-8 printed all combinations of numbers in the list – including
those where the two numbers are the same. Change the code above so these pairs are
not printed. You should end up with this list:

[[10, 20], [10, 30], [20, 10], [20, 30], [30, 10], [30, 20]]

Exercise 16-10

Can you solve the same task as in exercise 16-9, by modifying the code below? You can
begin by understanding why it produces the same list as that in exercise 16-8. If you
need help with that, then have another look at exercise 14-7.

nr_list = [10, 20, 30]
combinations = []
for i in range(len(nr_list)):

for j in range(len(nr_list)):
pair = [nr_list[i], nr_list[j]]
combinations.append(pair)

151

Exercise 16-11

The code in the exercise above printed all combinations of different numbers in the list.
But you can see that each pair of numbers still appears twice if you do not take their
order into account (e.g., [10, 30] are the same two numbers as [30, 10]). Change the
code you wrote for the previous exercise so these pairs are not printed. You should end
up with a list like this:

[[10, 20], [10, 30], [20, 30]]

Hint: the easiest way to do it is to use the value of i to change the range of numbers
you iterate over in the second for-loop.

Exercise 16-12

Sometimes programmers (like you) work with matrices of numbers like the one be-
low:

[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]

Here, I nicely wrote the list so you can see that a matrix is just a list of lists. When you
print it looks like this:

[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

Can you write some code that produces this matrix? If you let out a sigh just now,
then reread the sections on lists and for-loops. You may think you absorbed all the
information you could when you read it the first time, but with your practice since
then, you may be able to understand it at a deeper level the second or third time you
read it.

The code below produces the matrix above. There are several tricky parts that you need
to make sure you understand. In line three, we add an empty list to the list of lists. In
line five, we add the value of j to the list at index ‘i’ in the list. Go over this many times
in your head and with pen and paper.

152

matrix = []
for i in range(5):

matrix.append([])
for j in range(5):

matrix[i].append(j)

Exercise 16-13

If you understand how you created the matrix in exercise 16-12, you should be able to
produce the matrix below using a small modification to the code from exercise 16-12.

[[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4],
[5, 5, 5, 5, 5]]

Exercise 16-14

Now produce this matrix:

[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]

Exercise 16-15

Can you write some code that produces this matrix?:

[[0, -1, -2, -3, -4],
[-1, 0, 0, 0, 0],
[-2, 0, 0, 0, 0],
[-3, 0, 0, 0, 0],
[-4, 0, 0, 0, 0]]

153

General exercises

“

”

By now, you have learned a lot, and the general exercises, which serve to
keep it all current, get more complicated. But remember: even though the
code may mix lists, for-loops, and functions, the rules for lists, for-loops,
and functions are not mixed. The separate simple rules for a list, a for-
loop, and a function are still the same. If you get confused, it is time to
revisit the sections about each separate topic. You may have to do that
many times during the course.

Exercise 16-16

Write a function, square_numbers, that takes a list of numbers as argument and returns
a new list with the numbers squared.

write your function definition here ...

numbers = [1, 5, 3, 7]

then you can call it like this:
squared = squared_numbers(numbers)

Exercise 16-17

Write a function count_characters, which takes a string argument and returns a dictio-
nary with the counts of each character in the string. When you call the function like
this:

count_characters('banana')

it must return (not necessarily with key-value pairs in that order):

{'n': 2, 'b': 1, 'a': 3}

The technique you should use is the one you learned in exercise 16-2. Here, we iterate
over a string of characters instead of a list of numbers. Here is a bit of code to help you
along.

154

def count_characters(text):
counts = {}
fill in the missing code ...

return counts

Exercise 16-18

Use the function you made in the previous exercise to construct the following data
structure below from this list: ['banana', 'ananas', 'apple'].

{ 'banana': {'b': 1, 'a': 3, 'n': 2},
'apple': {'a': 1, 'e': 1, 'p': 2, 'l': 1},
'ananas': {'a': 3, 's': 1, 'n': 2} }

Here is some code to help you along:

my_database = {}
for word in ['banana', 'ananas', 'apple']:

my_database[word] = # you figure this out...

Once you are done, what value do you think my_database['banana'] represents?
I.e., what will it be reduced to if used in an expression? And what value does
my_database['banana']['a'] represent?

Exercise 16-19

Read the code below and make sure you understand each step before you write any of
it. If necessary, revisit previous sections and look in the Python documentation. Then,
write and run the code—and enjoy that it was exactly what you expected.

def get_words(text, search_string):
hits = []
for word in text.split():

if search_string in word:
hits.append(word)

return hits

s = 'eenie meenie minie moe'
nie_words = get_words(s, 'nie')

155

m_words = get_words(s, 'm')

print(' '.join(nie_words))
print(' '.join(m_words))

Exercise 16-20

This larger will take you through some of the most common string manipulations. A
palindrome is a string that is spelled the same way, backward and forwards.

Write a function, is_palindrome, which takes one argument:

• A string.

The function must return:

• True if the string argument is a palindrome and False otherwise.

Example usage:

is_palindrome('abcba')

should return True and

is_palindrome('foo')

should return False

One approach to this is to run through s from the first to the middle character, and for
each character, check if the character is equal to the character at the same index from
the right rather than the left. Remember that the first character of a string is at index 0
and the last at index -1, the second character is at index 1 and the second last at index
-2 and so forth.

Since you need to run through the string from the first to the middle character, you
must first figure out how many characters that corresponds to. Say your palindrome is
"ACTGTCA", then the number of indexes you need to loop over with a for loop is:

s = "ACTGTCA"
nr_indexes = len(s)//2

156

Figure out how to make range() return indexes to access the characters in the first half
of the sequence. Then make a for loop where you iterate over the indexes you get from
range(). Try to make the for-loop print out the first half of the characters, just to make
sure you are using the right indexes.

Once you get this far, you must compare each character from the first half of the cor-
responding ones, starting from the other end of the palindrome. Figure out how to
change each index used for the first half to the corresponding index for the other half
so you can compare the relevant pairs. (You need to compare index 0 with -1, 1 with -2
and so on. . .)

Now, try to make the for loop print both the character from the first half and the corre-
sponding character from the other end. If you get the indexes right, you will see that
the A prints with the A from the other end, the C with the C, and so on.

Write an if-statement in the for-loop that tests whether the two corresponding charac-
ters are identical. If the string is a palindrome, then each pair is identical. So, as soon
as you see a pair that is not identical, you know it is not a palindrome, and you can let
your function return False like this:

if left_character != right_character:
return False

Remember that the function ends when it encounters a return statement.

If all pairs pass the test, the string is a palindrome, and the function should return True
when exiting the for loop.

157

17 Recursion

At the time of “printing,” this chapter was unfinished. So I have added some empty pages so
you can merge the chapter into the pdf later without messing up the chapter, exercise and page
numbers

Recursion

PLACEHOLDER PAGE

159

Divide and conquer

PLACEHOLDER PAGE

160

Exercise 17-1

PLACEHOLDER PAGE

161

18 Testing your code

This chapter is about how you figure out if the code you wrote solves the problem in the way
you intended. You will be surprised how often that is not the case – even for seasoned program-
mers.

Why test your code?

There are tons of reasons why you should test your code. Here are what I think are the
two most important ones:

1. Makes you think: Testing forces you to slow down and think about exactly what
the code is supposed to do. By deciding what tests to do before you start coding,
you try to anticipate errors and cases that need to be covered by how you want
to solve the problem. The notion of falsification is important in science and in
coding, too. You should try to prove that your idea is wrong and consider it valid
only if this process fails. So, testing motivates you to think about ways to break
their code, thereby helping you solve your programming problem in a general
and robust way so that it does exactly what you expect it to do.

2. Gives you peace of mind: Testing increases your confidence that a function you
have written works as it is supposed to so that you can now stop thinking about
how it is implemented and focus on using it as a component in solving a larger,
more complicated problem. Having set up a series of tests also allows you to
change and improve your function’s implementation without worrying that it
stops working the way it is supposed to. As long as it passes all the tests, it
should be ok.

Testing of code is a big thing in programming. Professionals consistently test their code.
You will do it in time, too, but in this course, you will only do the basic testing yourself.
Instead, you will have access to readymade testing suites made especially for each of
your programming projects.

Basic testing

Say that you are asked to make a function that takes a string argument and returns
True if that string is a palindrome and False otherwise (hypothetical example). Then

163

you start thinking about which strings should make the function return True and which
return False. Once you have defined your is_palindrome function, you can set up some
fairly obvious tests like this:

print(is_palindome('123321') == True)
print(is_palindome('ATGGTA') == True)
print(is_palindome('ATGATG') == False)
print(is_palindome('XY') == False)

But if you keep thinking, maybe you will come up with more tests to cover all the
different types of cases you may encounter:

print(is_palindome('12321') == True) # uneven length
print(is_palindome('121') == True) # uneven length
print(is_palindome('AA') == True)
print(is_palindome('A') == True) # single char

The project testing utility

To keep you focused on the programming part, each of the programming projects you
will do in this course comes with a ready-made suite of tests of the functions you are
asked to implement. So, for each function, you can run tests to ensure it implements
the behavior it is supposed to.

Each project comes with two files that you can download from the course page.
They have their names for a good reason, so do not change them. In the
first project about translating DNA, they are called translationproject.py and
test_translationproject.py.

To be able to test your functions, you must write your code in the file called
translationproject.py. To run your code, you type this in the Terminal as usual:

Listing 18.1 Terminal

python translationproject.py

To test the functions as you complete each one, you can run the test script
test_translationproject.py like this:

The code in test_translationproject.py reads your code in translationproject.py
and performs a series of tests of each function. When you run the test script, four
things may happen depending on the state of your code:

164

Listing 18.2 Terminal

python test_translationproject.py

Case 1: If you have not yet implemented all the functions, the test script will remind
you (once for each test) that you did not implement the functions with the names re-
quired.

Listing 18.3 Terminal

ATTENTION! The following functions are not defined:

translate_codon
split_codons
translate_orf

These functions are either not correctly named (spelled)
or not defined at all. They will be marked as FAILED.
Check your spelling if this is not what you intend.

Ran 16 tests in 0.000s

OK (skipped=14)

If you have implemented a function but misspelled its name, you will also get this type
of reminder. The reminders are meant to ensure that you do not hand in the assignment
with missing or misspelled function definitions.

Case 2: If a test for one of the functions you have written fails, the testing is aborted,
and the script prints some information to help you understand what the problem could
be. Say you wrote the function translate_codon wrongly so that it always returns M for
some reason:

def translate_codon(codon):
return 'M' # crazy

then you would get this message:

It is now left to you to figure out why your function returns the wrong value when
called with these arguments.

165

Listing 18.4 Terminal

FAILED TEST CASE: test_translate_codon_2

MESSAGE:
The call:

translate_codon('TAA')

returned:

'M'

However, it should return:

'*'

==
Ran 4 tests in 0.001s

FAILED (failures=1)

Case 3: If you defined all functions correctly and they all work the way they are sup-
posed to, then the test script just prints:

Ran 14 tests in 0.140s

OK

166

Part II

Python projects

167

19 Translating ORFs

This chapter is about translating DNA into protein. If bacteria can do it, so can you.

In this project you will write the code needed to translate an open reading frame (ORF)
on a DNA sequence into into the corresponding sequence of amino acids.

Project files

Begin by downloading the files you need for the project:

https://munch-group.org/bioinformatics/supplementary/project_files

The file translationproject.py is for your code. The file test_translationproject.py
is the script you use to test the functions you write for this project (see Chapter 18).

In this project you will need a data structure that pairs each codon to the amino acid it
encodes. This is an obvious use of a dictionary and at the top of translationproject.py
I have defined such a dictionary you can use. Defining it outside the functions means
that it is visible inside all your functions (unless you define another variable called
codon_map inside a function). Defining variables globally to your program sometimes
make sense if some value can be considered a constant in your program and is never
changed.

“

”

It is normally very bad programming style to access variables outside
functions in this way because it may have all kinds of unexpected side
effects across function calls. So make it a rule for yourself that code inside
a function should never to access variables outside the function. The rea-
son we define codon_map globally in this project is to help you understand
that when Python cannot find a variable inside a function, it looks outside
the function to find it. In this project functions will find codon_map in this
way. However, as I already said, you should never do this yourself. The
chance that you make an unexpected mistake is overwhelming.

169

https://munch-group.org/bioinformatics/supplementary/project_files

Translating a single codon

Write a function, translate_codon that takes one argument:

1. A string, which is a codon.

The function should return:

• A string of length one (one character). If the string argument is a valid codon then
this letter should the be an amino acid letter specified by the codon_map dictionary.
Note that stop codons are represented by a star ('*'). If the string argument is not
a valid codon, the function must return '?'.

Example usage:

translate_codon('ACG')

should return

'T'

Before you start coding you should always outline for yourself intuitively what you
need to do to complete the task at hand. In this case want to translate, or map, between
a three letter string, codon, and the corresponding one letter string for the amino acid
that the codon corresponds to. Notice that the keys in the codon_map dictionary are in
upper case, so you must make sure that the keys you use are also in upper case. You
can translate codon into an upper case version of itself using the upper() method.

Try this out first:

codon = 'TTG'
amino_acid = codon_map[codon]
print(amino_acid)

Now write the function so it uses the string parameter as a key to look up the corre-
sponding amino acid letter and returns this letter. Before you go on, make a function
that does only that.

Before you are completely done you need to make your function handle the situation
when the argument to the function is not a key in the codon_map dictionary. Use an if-
else construct to handle the two cases. The boolean expression must test if the function
argument is a key in codon_map. Remember that you can use the in operator to do
this.

170

Splitting an open reading frame into codons

To translate an entire open reading frame into the corresponding amino acid sequence,
you need to split the ORF sequence into codons. When we have done that we can
translate each codon using the function translate_codon you just wrote.

Write a function, split_codons, that takes one argument:

1. A string, which is an ORF sequence

The function must return:

• A list of strings. Each string must have length 3 and must represent the-non over-
lapping triplets in the same sequence as they appear in the string given as argu-
ment.

Example usage:

split_codons('ATGTATGCCTGA')

should return

['ATG', 'TAT', 'GCC', 'TGA']

Divide the problem into simpler tasks like above. You need to loop over the sequence
to perform operations on it. Start by writing a function that prints each character:

def split_codons(orf):
for i in range(len(orf)):

print(orf[i])

Now try to figure out how you can modify the function to make it move over the se-
quence in jumps of three. Look at the documentation for the range function to see how
you can make it iterate over numbers with increments of three like this: 0, 3, 6, 9, 12, . . .
. Modify your function so that it now prints every third character.

What you want is obviously not every third character. You want three characters. I.e.
every third character and the two characters that come right after. You can use the index
in the for loop to get the corresponding codon using slicing. Modify your function so
that it prints each codon.

Now all that remains is to put each codon on a list that you can return from the function.
You can define a list before your for-loop so you have a list to add codons to.

171

https://docs.python.org/3/library/stdtypes.html#range

Translating an open reading frame

Now you can use the two functions split_codons and translate_codon to write a func-
tion that translates an ORF into a protein sequence.

Write a function, translate_orf, that takes one argument:

1. A string, which is a DNA sequence.

The function must return

• A string, which is the protein sequence translated from the ORF sequence argu-
ment.

Example usage:

translate_orf('ATGGAGCTTANCAAATAG')

should return

'MEL?K*'

172

20 Primer analysis

Say you have a short sequence that you want to use as a PCR primer. To evaluate if it
a suitable primer, you need to know the melting temperature of the sequence. You also
need to make sure that it will not fold up on itself so that it cannot bind to the DNA
sequence you want to amplify.

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

• foldingproject.py is an empty file where you must write your code.
• test_foldingproject.py is the test program that lets you test the code you write

in translationproject.py.

Put the files in a folder dedicated to this project. On most computers you can right-click
on the link and choose “Save file as. . . ” or “Download linked file”.

Count the number of bases in your candidate primer

Before you can compute the melting temperature, you need to determine how many
times each base occurs in the sequence. You can assume that the only characters in the
string are A, T, G, and C.

Write a function, count_bases, which takes one argument:

1. A string, which is a DNA sequence.

The function must return:

• A dictionary, which in which keys are strings that represent bases and values are
integers that represent the number of occurrences of each base. If a base is not
found in the sequence, its count must be zero.

Example usage: If the function is called like this:

count_bases("ATGG")

then it should return (not necessarily with key-value pairs in the same order):

173

https://munch-group.org/bioinformatics/supplementary/project_files

{"A": 1, "C": 0, "G": 2, "T": 1}

Compute the melting temperature

Knowing the base composition in your sequence, you can now calculate the melting
temperature the double-stranded DNA that forms when your primer pairs up with the
sequence to amplify. If the primer has less than 14 bases the formula for calculating
melting temperature is:

Temp = (A + T) 2 + (G + C) 4

and if the primer has 14 bases or more it is calculated like this:

Temp = 64.9 + 41 (G + C 16.4)/(A + T + G + C)

The A, T, C, and G in the formulas represent the numbers of A, T, C and G in the DNA
primer.

You must write a function that applies these two formulas appropriately by taking the
length of the primer into account.

Write a function, melting_temp, which takes one argument:

1. A string, which is a DNA sequence (your primer).

The function must return:

• A number, which represents the melting temperature of the double-stranded
DNA corresponding to the DNA string given as argument.

Example usage: If the function is called like this:

melting_temp("ATG")

then it should return:

8

174

Reverse complement the sequence

It is possible that one part of the primer forms base pairs with another part of the primer
to form a hairpin structure. To figure out if this can happen to your primer, you need
to be able to find the reverse complement of DNA sequence. The reverse complement
of a DNA sequence is one where the sequence of bases is first reversed, and then each
base is replaced with its Watson-Crick complementary base.

Write a function, reverse_complement, which takes one argument:

1. A string, which is a DNA sequence.

The function must return:

• A string, which represents the reverse complement of the DNA string given as
argument.

Example usage: If the function is called like this:

reverse_complement("AATTC")

then it should return:

"GAATT"

Check for hairpins

You would like to be able to determine if your primer can fold to form a hairpin with
some specified minimum number of consequtive base pairs. We assume that hairpin
loops are always at least four bases long and that base pairs in the hairpin can only be
Watson-Crick basepairs. Here is an example of a hairpin with five basepairs and a loop
of four bases (four Cs):

C C
C C
A - T
T - A
A - T
T - A
A - T

175

To test if a sequence can form a hairpin with at least four consequtive base pairs, you
need to test if the sequence contains any subsequence of length four whose reverse
complement is identical to another nonoverlapping subsequence. To take into account
that the hairpin loop is at least four bases long, any such two subsequences must be
separated by at least four bases.

Write a function, has_hairpin, which takes two arguments:

1. A string, which is a DNA sequence.
2. An integer, which represents the minimum number of consequtive base pairs in

the hairpins to search for.

The function must return:

• True if the sequence contains a hairpin of at least the specified length and False
otherwise.

Example usage: If the function is called like this:

print(has_hairpin("ATATACCCCTATAT", 4))

then it should return:

True

This is a hard one, so I will give you a bit of help. Here is the function with some parts
missing.

def has_hairpin(s, k):
looplen = 4
for i in range(len(s)-k+1):

subs = # Hint A
right = # Hint B
revcl = reverse_complement(subs)
if revcl in right[looplen:]:

return True
return False

Hint A: Here you need to extract a substring of length k starting at i. Hint B: Here you
need to extract all the sequence to the right of substr.

176

21 Pairwise alignment

This chapter is about global pairwise alignment, and you will implement your own Needleman-
Wunch algorithm.

Your task is to find an optimal alignment of two sequences. If two such sequences are
roughly 140 bases long, there are as many different ways to align them as there are
atoms in the visible universe. Finding an optimal alignment among those 1080 possi-
bilities is a hard problem, but implementing the Needleman-Wunch algorithm will let
you do it.

This project is meant to train your coding abilities and consolidate your understanding
of the Needleman-Wunch algorithm. The better you understand the algorithm before
you begin, the easier and more rewarding the project will be. So, re-read the book
chapter about pairwise alignment and browse the lecture slides.

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files - alignmentproject.py
is the file where you must write your code. It already contains a function I wrote for
you. - test_alignmentproject.py is the test program that lets you test the code you
write in alignmentproject.py.

Put the files in a folder dedicated to this project. On most computers, you can right-click
on the link and choose “Save the file as. . . ” or “Download linked file.”

The project is split into two parts:

1. Filling in a dynamic programming matrix.
2. Reconstructing the optimal alignment by doing traceback through the dynamic

programming matrix.

To help you along, the alignmentproject.py file already contains a function I wrote for
you, so you can print your dynamic programming (DP) matrix as you gradually fill it in.
You are not expected to understand how this function works. I made it as condensed
as possible so it does not take up so much space in your file.

The function is named print_dp_matrix and takes two arguments:

1. A string, which represents a DNA sequence of some length m.
2. A string, which represents a DNA sequence of some length n.
3. A lists of lists of integers, representing a dynamic programming matrix.

177

https://munch-group.org/bioinformatics/supplementary/project_files

The function returns:

• None, but it prints a nice representation of the matrix lined with the bases of the
two sequences.

Filling in the dynamic programming matrix

Make a matrix

We start by making a list of lists (a matrix) with the right shape but only holds None
values. We use the None values as placeholders, which you can later replace with scores.
You can think of it as an empty matrix into which you can fill scores, just as we did in
the lectures. If you want to align two sequences like AT and GAT, you want a matrix with
three rows and four columns. Note that the matrix must have one more row than the
number of bases in sequence one and one more column than the number of bases in
sequence two.

Write a function, empty_matrix, that takes two arguments

1. An integer (which represents the length of sequence one + 1).
2. An integer (which represents the length of sequence two + 1).

The function must return:

• A list of lists. The number of sub-lists must be equal to the first integer argument.
Each sublist must contain a number of None values equal to the second integer
argument.

Example usage:

empty_matrix(3, 4)

returns a list with three lists each of length four:

[[None, None, None, None], [None, None, None, None], [None, None, None, None]]

Even though this is a list of lists, we can think of it as a three-by-four matrix:

[[None, None, None, None],
[None, None, None, None],
[None, None, None, None]]

178

If you want to print the matrix in a way that looks like the slides I showed you at
the lecture, you can use the print_dp_matrix function (again, None represents empty
cells):

G A T
None None None None

A None None None None
T None None None None

Important: You can implement empty_matrix in a way that superficially looks ok but
will cause you all kinds of grief when you start filling it in. When you create the list
of lists (e.g., three as above), you must generate and add three separate lists. If you add
the same list three times, you do not have three separate rows in your matrix. Instead,
you have three references to the same row. You can test if you did it right this way – by
changing the value of one cell to see what happens:

empty = empty_matrix(3, 4)
empty[0][0] = 'Mogens'
print(empty)

If this only changed one value like below, you are ok:

[['Mogens', None, None, None], [None, None, None, None], [None, None, None, None]]

If it changed the first value in all the lists, it means that all your lists are the same (which
is not what you want).

[['Mogens', None, None, None], ['Mogens', None, None, None], ['Mogens', None, None, None]]

Fill the top row and left column

Now that you can make a matrix with the correct dimensions, you need to write a
function that fills in the top row and the left column with multiples of the gap score.
E.g., if the gap score is -2, you want the matrix to look something like this when you
print it with print_dp_matrix:

G A T
0 -2 -4 -6

A -2 None None None
T -4 None None None

179

Write a function, prepare_matrix, which takes three arguments:

1. An integer (which represents the length of sequence one plus one)
2. An integer (which represents the length of sequence two plus one)
3. An integer, which represents the gap_score used for alignment.

The function must return:

• A list of lists. The number of sub-lists must be equal to the first integer argument.
The values in the first sub-list must be multiples of the gap score given as the third
argument. The first elements of the remaining sub-lists must be multiples of the
gap score. All remaining elements of sub-lists must be None.

Example usage:

prepare_matrix(3, 4, -2)

must return:

[[0, -2, -4, -6], [-2, None, None, None], [-4, None, None, None]]

Hint

You should call empty_matrix inside prepare_matrix to get a matrix filled with
None.

Now, all you need to do is replace the right None values with multiples of the gap score.
For example, the third element in the first sub-list is matrix[2][0], for which you would
need to assign the value 2 times the gap score. In the same way matrix[3][0] should be
3 times the gap score. So, you need to figure out which elements you should replace and
which pairs of indexes you need to access those elements. Then, use range to generate
those indexes and for-loops to loop them over.

Fill the entire matrix

Now that we can fill the top row and left column, we can start thinking about how to
fill the whole matrix.

For that, we need a score matrix of match scores. In Python, that is most easily repre-
sented as a dictionary of dictionaries like this:

score_matrix = {'A': {'A': 2, 'T': 0, 'G': 0, 'C': 0},
'T': {'A': 0, 'T': 2, 'G': 0, 'C': 0},
'G': {'A': 0, 'T': 0, 'G': 2, 'C': 0},
'C': {'A': 0, 'T': 0, 'G': 0, 'C': 2}}

180

That lets you get the score for matching an A with a T like this: score_matrix['A']['T'].
Note that the match scores are only for uppercase letters (A, T, G, C).

Write a function, fill_matrix, which takes four arguments:

1. A string, which represents the first sequence.
2. A string, which represents the second sequence.
3. A dictionary of dictionaries like the one shown above, which represents match

scores.
4. An integer, which represents the gap score.

The function must return:

• A list of lists of integers, which represents a correctly filled dynamic programming
matrix given the two sequences, the match scores, and the gap score.

Example usage: If score_matrix is defined as above, then

fill_matrix('AT', 'GAT', score_matrix, -2)

must return:

[[0, -2, -4, -6], [-2, 0, 0, -2], [-4, -2, 0, 2]]

If you print that matrix using print_dp_matrix it should look like this:

G A T
0 -2 -4 -6

A -2 0 0 -2
T -4 -2 0 2

Hint

You should call prepare_matrix inside fill_matrix to get a matrix with the
top row and left column filled. Assuming seq1 is sequence one and seq2 is
sequence two, then you can do it like this:

matrix = prepare_matrix(len(seq1)+1, len(seq2)+1, gap_score)

Now, you only need to fill out the rest. You need two nested for-loops to produce the
indexes of the elements in the list of lists that you need to assign values to.

181

for i in range(1, len(seq1)+1):
for j in range(1, len(seq2)+1):

print(i, j) # just to see what i and j are

Examine this code and make sure you understand why we give those arguments to
range. Each combination of i and j lets you access an element matrix[i][j] in matrix
(list of lists) that you can assign a value to. The value to assign to matrix[i][j] (green
cell on the slides) is the maximum of three values (the yellow cells on the slide):

1. The value of the cell to the left (matrix[i][j-1]) plus the gap score.
2. The cell above (matrix[i-1][j]) plus the gap score.
3. The diagonal cell (matrix[i-1][j-1]) plus the match score for base number i (in-

dex i-1) of sequence one and base number j (index j-1) of sequence two.

Reconstructing the optimal alignment

This is the most challenging part, so I will hold your hand here. Below is first a function
that identifies which of three cells (the yellow cells on the slides) some cell (green cell on
the slides) is derived from. On the slides, this is the cell pointed to by the red arrow.

def get_traceback_arrow(matrix, row, col, match_score, gap_score):

yellow cells:
score_diagonal = matrix[row-1][col-1]
score_left = matrix[row][col-1]
score_up = matrix[row-1][col]

gree cell:
score_current = matrix[row][col]

if score_current == score_diagonal + match_score:
return 'diagonal'

elif score_current == score_left + gap_score:
return 'left'

elif score_current == score_up + gap_score:
return 'up'

Write (do not copy and paste) this into your file, and make sure that it works and that
you understand exactly how it works before you proceed.

182

Here is a function that uses get_traceback_arrow to do the traceback. It reconstructs
the alignment starting from the last column, adding columns in front as the traceback
proceeds. It is big, so it breaks across three pages.

def trace_back(seq1, seq2, matrix, score_matrix, gap_score):

Strings to store the growing alignment strings:
aligned1 = ''
aligned2 = ''

The row and col index of the bottom right cell:
row = len(seq1)
col = len(seq2)

Keep stepping backwards through the matrix untill
we get to the top row or the left col:
while row > 0 and col > 0:

The two bases we available to match:
base1 = seq1[row-1]
base2 = seq2[col-1]

The score for mathing those two bases:
match_score = score_matrix[base1][base2]

Find out which cell the score in the current cell was derived from:
traceback_arrow = get_traceback_arrow(matrix, row, col, match_score, gap_score)

if traceback_arrow == 'diagonal':
last column of the sub alignment is base1 over base2:

aligned1 = base1 + aligned1
aligned2 = base2 + aligned2
next cell is the diagonal cell:
row -= 1
col -= 1

elif traceback_arrow == 'up':
last column in the sub alignment is base1 over a gap:

aligned1 = base1 + aligned1
aligned2 = '-' + aligned2
next cell is the cell above:
row -= 1

elif traceback_arrow == 'left':
last column in the sub alignment is a gap over base2:

aligned1 = '-' + aligned1

183

aligned2 = base2 + aligned2
next cell is the cell to the left:
col -= 1

If row is not zero, step along the top row to the top left cell:
while row > 0:

base1 = seq1[row-1]
aligned1 = base1 + aligned1
aligned2 = '-' + aligned2
row -= 1

If col is not zero, step upwards in the left col to the top left cell:
while col > 0:

base2 = seq2[col-1]
aligned1 = '-' + aligned1
aligned2 = base2 + aligned2
col -= 1

return [aligned1, aligned2]

Once you have written it into your file, make sure you understand the correspondence
to the sequences of events on the lecture slides.

Now you can write a function that performs the alignment. You get to do that yourself.
It just calls fill_matrix and then trace_back to get the optimal alignment

Write a function, align, that takes four arguments:

1. A string, which represents sequence one.
2. A string, which represents sequence two.
3. A dictionary of dictionaries, which represents the match scores (as described

above).
4. An integer, which represents the gap score.

The function must return:

• A list of length two. The first element of that list must be a string representing
the aligned sequence one. The second element must be a string, representing the
aligned sequence two.

Example usage:

align('ATAT', 'GATGAT', score_matrix, -2)

must return:

184

['-AT-AT', 'GATGAT']

Once you have written that function, you can print your alignment like this:

alignment = align('ATAT', 'GATGAT', score_matrix, -2)
for s in alignment:

print(s)

185

22 Codon usage

Codon usage bias refers to differences in the frequency of occurrence of synonymous
codons in coding DNA. There are 64 different codons (61 codons encoding for amino
acids plus 3 stop codons) but only 20 different translated amino acids. The overabun-
dance in the number of codons allows many amino acids to be encoded by more than
one codon. Because of such redundancy, it is said that the genetic code is degenerate.
Different organisms often show particular preferences for one of the several codons
that encode the same amino acid, that is, a greater frequency of one will be found than
expected by chance. How such preferences arise is a much-debated area of molecular
evolution.

Given an open reading frame (ORF), you must compute the codon usage. Your goal is
to create a data structure where you can look up an amino acid and the frequencies of
codons in that encode that amino acid the ORF. Here is a made-up example:

{'A': {'GCA': 0.0, 'GCC': 0.0, 'GCT': 1.0, 'GCG': 0.0},
'C': {'TGC': 0.0, 'TGT': 1.0},
'E': {'GAG': 0.2, 'GAA': 0.8},
'D': {'GAT': 1.0, 'GAC': 0.0},
'G': {'GGT': 0.3, 'GGG': 0.0, 'GGA': 0.7, 'GGC': 0.0},
'F': {'TTC': 0.0, 'TTT': 1.0},
'I': {'ATT': 1.0, 'ATC': 0.0, 'ATA': 0.0},
'H': {'CAC': 0.0, 'CAT': 1.0},
'K': {'AAG': 0.2, 'AAA': 0.8},
'*': {'TAG': 0.0, 'TGA': 1.0, 'TAA': 0.0}, 'M': {'ATG': 1.0},
'L': {'CTT': 0.0, 'CTG': 0.6, 'CTA': 0.0, 'CTC':0.0, 'TTA': 0.4, 'TTG': 0.0},
'N': {'AAT': 0.5, 'AAC': 0.5},
'Q': {'CAA': 0.6, 'CAG': 0.4},
'P': {'CCT': 0.5, 'CCG': 0.0, 'CCA': 0.5, 'CCC': 0.0},
'S': {'TCT': 0.0, 'AGC': 0.0, 'TCG': 0.0, 'AGT': 0.5, 'TCC': 0.0, 'TCA': 0.5},
'R': {'CGA': 0.5, 'CGC': 0.0, 'AGA': 0.5, 'AGG': 0.0, 'CGG': 0.0, 'CGT': 0.0},
'T': {'ACC': 0.0, 'ACA': 0.0, 'ACG': 0.0, 'ACT': 1.0},
'W': {'TGG': 1.0},
'V': {'GTA': 0.6, 'GTC': 0.0, 'GTT': 0.2, 'GTG': 0.2},
'Y': {'TAT': 1.0, 'TAC': 0.0}}

That data structure is a dictionary with keys corresponding to amino acids (i.e. single
letter strings designating an amino acid such as 'R' for arginine). The value associated

187

with each amino acid key is also a dictionary, and the keys of this dictionary should be
the different codons that encode the amino acid. The value associated with each codon
key should be a number, representing the frequency with which that codon is used to
encode that amino acid. The final data structure should only include amino acids that
are found in the ORF.

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

• sample_orfs.txt contains open reading frame sequences you can work on.
• codonbiasproject.py is an empty file where you must write your code.
• test_codonbiasproject.py is the test program that lets you test the code you

write in codonbiasproject.py.

Now open each file in VScode and have a look at what is in sample_orfs.txt. (Do not
change it in any way and do not save it after viewing. If VScode asks you if you want
to save it before closing, say no.) How many sequences are there in each file?

As in the translation project, you will need a data structure that pairs each codon to
the amino acid it encodes. This is an obvious use of a dictionary and at the top of
codonbiasproject.py I have defined such a dictionary you can use. Defining it outside
the functions means that it is visible inside all your functions (unless you define another
variable called codon_map inside a function). Defining variables globally like this some-
times make sense if some value can be considered a constant in your program and is
never changed.

“

”

It is normally very bad programming style to access variables outside
functions in this way because it may have all kinds of unexpected side
effects across function calls. So make it a rule for yourself that code inside
a function should never to access variables outside the function. The rea-
son we define codon_map globally in this project is to help you understand
that when Python cannot find a variable inside a function, it looks outside
the function to find it. In this project, functions will find codon_map in this
way. However, as I already said, you should never do this yourself. The
chance that you make an unexpected mistake is overwhelming.

The project is split into four parts:

1. Read an open reading frame (ORF) into your script and count the codons.
2. Group the codon counts by the amino acids the codons encode.
3. Convert counts to frequencies.
4. Build the data structure representing the codon bias information.

188

https://munch-group.org/bioinformatics/supplementary/project_files

Read an open reading frame and count its codons

Read ORFs from a file

You can use this code to read the ORFs into your script:

f = open('sample_orfs.txt', 'r')
orf_list = list()
for line in f:

seq = line.strip()
orf_list.append(seq)

f.close()

Try to print the list to see it. Then pick out the first ORF in the list so you can use that
to test your code:

test_orf = orf_list[0]

Split the ORF into codons

You need a function that splits the ORF into codons. This one you have already imple-
mented in the exercise about translating DNA – and if, not here it is in my version to
get you started.

def split_codons(orf):
codon_list = []
for i in range(0, len(orf)-2, 3):

codon_list.append(orf[i:i+3])
return codon_list

Before you go on, make sure you understand/remember how this function works and
what it returns.

Count codons in an ORF

Now you need to count the number of times each codon occurs in the ORF.

Write a function, count_codons, that take one argument:

1. A string, which represents the open reading frame.

The function must return:

189

• A dictionary where keys are strings representing codons and associated values are
integers representing the number of times each codon occurs in the ORF given as
argument.

Example usage:

count_codons("ATGTCATCATGA")

should return:

{'CTT': 0, 'ATG': 1, 'ACA': 0, 'ACG': 0, 'ATC': 0, 'AAC': 0,
'ATA': 0, 'AGG': 0, 'CCT': 0, 'ACT': 0, 'AGC': 0, 'AAG': 0,
'AGA': 0, 'CAT': 0, 'AAT': 0, 'ATT': 0, 'CTG': 0, 'CTA': 0,
'CTC': 0, 'CAC': 0, 'AAA': 0, 'CCG': 0, 'AGT': 0, 'CCA': 0,
'CAA': 0, 'CCC': 0, 'TAT': 0, 'GGT': 0, 'TGT': 0, 'CGA': 0,
'CAG': 0, 'TCT': 0, 'GAT': 0, 'CGG': 0, 'TTT': 0, 'TGC': 0,
'GGG': 0, 'TAG': 0, 'GGA': 0, 'TGG': 0, 'GGC': 0, 'TAC': 0,
'TTC': 0, 'TCG': 0, 'TTA': 0, 'TTG': 0, 'TCC': 0, 'ACC': 0,
'TAA': 0, 'GCA': 0, 'GTA': 0, 'GCC': 0, 'GTC': 0, 'GCG': 0,
'GTG': 0, 'GAG': 0, 'GTT': 0, 'GCT': 0, 'TGA': 1, 'GAC': 0,
'CGT': 0, 'GAA': 0, 'TCA': 2, 'CGC': 0}

– though not necessarily with key-value pairs in that order.

In the function, you should use the split_codons function to split the ORF into a list of
codons. Then create an empty dictionary that you can populate with counts. You want
all the possible codons to be in your dictionary. That way, the codons you do not find in
your ORF will have a count of 0. In this case, such absence is also valuable information.
To achieve this you must start by filling the dictionary with a key for each codon and
give each a count of 0. You can do that by iterating over the keys in the dictionary that
maps codons to amino acids. Then you must iterate over all the codons in the list of
codons produced by the split_codons function and add counts to the dictionary as you
go.

Group codon counts by amino acid

Having counted how many times each codon appears in the ORF, you need to group
the counted codons by the amino acid they encode.

Write a function, group_counts_by_amino_acid, which takes one argument:

1. A dictionary, as that returned by count_codons.

190

The function must return:

• A dictionary of dictionaries, which pairs each amino acid with a dictionary with
counts of how many times each codon is used to encode that amino acid in the
ORF.

Example usage: Assuming counts is the dictionary returned by count_codons as in the
previous example.

grouped_counts = group_counts_by_amino_acid(counts)

then group_counts_by_amino_acid should return:

{'A': {'GCA': 0, 'GCC': 0, 'GCT': 0, 'GCG': 0},
'C': {'TGC': 0, 'TGT': 0},
'E': {'GAG': 0, 'GAA': 0},
'D': {'GAT': 0, 'GAC': 0},
'G': {'GGT': 0, 'GGG': 0, 'GGA': 0, 'GGC': 0},
'F': {'TTC': 0, 'TTT': 0},
'I': {'ATT': 0, 'ATC': 0, 'ATA': 0},
'H': {'CAC': 0, 'CAT': 0},
'K': {'AAG': 0, 'AAA': 0},
'*': {'TAG': 0, 'TGA': 1, 'TAA': 0},
'M': {'ATG': 1},
'L': {'CTT': 0, 'CTG': 0, 'CTA': 0, 'CTC': 0, 'TTA': 0, 'TTG': 0},
'N': {'AAT': 0, 'AAC': 0},
'Q': {'CAA': 0, 'CAG': 0},
'P': {'CCT': 0, 'CCG': 0, 'CCA': 0, 'CCC': 0},
'S': {'TCT': 0, 'AGC': 0, 'TCG': 0, 'AGT': 0, 'TCC': 0, 'TCA': 2},
'R': {'AGG': 0, 'CGC': 0, 'CGG': 0, 'CGA': 0, 'AGA': 0, 'CGT': 0},
'T': {'ACC': 0, 'ACA': 0, 'ACG': 0, 'ACT': 0},
'W': {'TGG': 0},
'V': {'GTA': 0, 'GTC': 0, 'GTT': 0, 'GTG': 0},
'Y': {'TAT': 0, 'TAC': 0}}

– though not necessarily with key-value pairs in that order.

So if we pretend the resulting dictionary of dictionaries is called d, then d['S'] will be
a dictionary where keys are codons encoding the ‘S’ amino acid and the values are the
counts of those codons. That means that you can access a particular count like this:

d['S']['TCA']

191

In the above example, this count is 2. So the task is really just to distribute counts given
as the first argument into groups for each amino acid. Depending on what you call
your variables it could look something like this:

grouped_counts[acid][codon] = codon_counts[codon]

Your function should begin by defining an empty dictionary to add to. Then use a
for-loop to run through all codon/amino-acid pairs and populate your dictionary of
dictionaries.

Turn counts into frequencies

Now you know how many times each codon represents a certain amino acid, but we
would like to know with which frequency a certain codon represents an amino acid. So
you need to normalize the counts so they become frequencies. You do that by dividing
each codon count by the total number of codons encoding the same amino acid. We
split the solution to this problem in two. We first write a helper function that turns
codon counts for one amino acid into frequencies.

Write a function, normalize_counts, which takes one argument:

1. A dictionary, where keys are strings representing codons and values are integers
representing the counts of these codons.

The function must return:

• A dictionary, where keys are strings representing codons and values are floats
representing the frequency at which each codon appear. That is, the count of that
codon divided by the total of all codon counts in the dictionary. The frequencies
for codons that encode the same amino acid must of sum to one. That means that
in cases where the total count is zero, the function must return None.

Example usage:

normalize_counts({'ATT': 8, 'ATC': 10, 'ATA': 2})

should return:

{'ATC': 0.5, 'ATA': 0.1, 'ATT': 0.4}

192

– though not necessarily with key-value pairs in that order.

Now you have solved part of the task, what remains is to now use that function to
normalise the codon counts of each amino acid in your grouped counts:

Write a function, normalize_grouped_counts, which takes one argument:

1. A dictionary of dictionaries, as that returned by group_counts_by_amino_acid.

The function must return:

• A new dictionary of dictionaries where the values of the inner dictionaries are
frequencies instead of counts as in the example in the introduction. You should
not include amino acids for which there are no counted codons.

Example usage: Assuming gr_counts is the dictionary of dictionaries returned by
grouped_group_counts_by_amino_acid in the example above.

normalize_grouped_counts(gr_counts)

should return:

{'*': {'TAA': 0.0, 'TGA': 1.0, 'TAG': 0.0},
'M': {'ATG': 1.0},
'S': {'AGC': 0.0, 'TCG': 0.0, 'TCC': 0.0, 'TCT': 0.0, 'AGT': 0.0, 'TCA': 1.0}}

– though not necessarily with key-value pairs in that order.

Here is some help to get you started:

def normalize_grouped_counts(grouped_counts):
grouped_freqs = {}
for aa in grouped_counts:

counts = grouped_counts[aa]

Amino acids with no codon counts should not be part of the data structure. Remember
that in this case normalize_counts returns None, so you can simply test if the return
value from normalize_counts is None

193

Compute the codon usage

Now all that remains is to tie together the functions you have written in a final function
that generates your big data structure from an ORF:

Write a function, codon_usage, which takes one argument:

1. A string, which is an ORF.

The function must return:

• A dictionary of dictionaries, same as that returned by normalize_grouped_counts.

194

23 HIV sub-groups

This chapter is a programming project where you will put your new programming skills to use
analyzing an HIV DNA sequences.

You have now been introduced to all the programming rules you will see in this course.
You now know all the building blocks required to write any program – literally any.
The reason why computer geeks are good at what they do is not that they know some
incomprehensible secrets. It is because they practiced, a lot. With practice, the simple
rules you know now will let you write anything from first-person shooter games over
jumbo jet autopilots to scripts for simple problems in bioinformatics. In the last three
chapters, we will train your ability to solve bioinformatics problems by putting together
all the things you have learned.

The programming project in this chapter deals with DNA sequences from HIV viruses.
There are two types of HIV: HIV-1, which is by far the most common, and HIV-2, which
is mostly found in West Africa. HIV-1 vira are divided into groups M, N, O, and P.
The most important group M (for major) is one primarily responsible for the global
epidemic. Group M is further divided into subtypes A, B, C, D, F, G, J, K, and CRFs.
In this project we will look at sequences from the subtypes A, B, C, and D. You have
multiple database sequences for each of these four subtypes and you have one unknown
sequence from a patient that you need to assign to either subtype A, B, C or D. To do
this you will have to write a program that predicts the subtype of the unknown sequence.
How cool is that?

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

• unknown_type.txt contains an HIV sequence of unknown subtype
• subtypeA.txt contains a database of HIV sequences of subtype A
• subtypeB.txt contains a database of HIV sequences of subtype B
• subtypeC.txt contains a database of HIV sequences of subtype C
• subtypeD.txt contains a database of HIV sequences of subtype D

You also need to download the two project files:

• hivproject.py is an empty file where you must write your code.
• test_hivproject.py is the test program that lets you test the code you write in

hivproject.py.

195

https://munch-group.org/bioinformatics/supplementary/project_files

Put the files in a folder dedicated to this project. On most computers you can right-click
on the link and choose “Save file as. . . ” or “Download linked file”.

Now open each file in VScode and have a look at what is in the data files. (Do not change
them in any way and do not save them after viewing. If VScode asks you if you want
to save it before closing, say no.) How many sequences are there in each file?

The project is divided into the following parts:

• Compute the similarity of two sequences
• Read the HIV sequences into your program.
• Assess the similarity of your unknown HIV sequence to each of the HIV

sequences with known subtype.
• Find the maximum similarity of your unknown sequence to sequences from each

subtype.
• Identify the HIV subtype of your sequence as the subtype of that sequence that

your sequence is most similar to.

Make sure you read the entire exercise and understand what you are supposed to do
before you begin!

Compute the similarity of two sequences

We need to compare our unknown HIV sequence to all the HIV sequences of known
subtypes. That way we can identify the sequence of a known subtype that is most
similar to your unknown sequence. We will then assume that our unknown sequence
has the same subtype as this sequence. To accomplish this we first need to write some
code that compares two sequences so we can compare our HIV sequence to each of the
other HIV sequences.

Compare two sequences

Write a function sequence_similarity that takes two arguments:

1. A string which is a DNA sequence.
2. A string of the same length as argument one, which is also a DNA sequence.

The function must return:

• A float, which is the proportion of bases that are the same in two DNA sequences.

196

Example usage:

sequence_similarity('AGTC' 'AGTT')

should return 0.75.

Start out defining your function like this:

def sequence_similarity(seq1, seq2):
your code here...

Remember that range(len(seq1)) generates the numbers you can use to index the
string seq1. You can use those numbers as indexes to look up positions in both strings.
You will need a for-loop in your function and a variable that keeps track of how many
similarities you have seen as you iterate through the sequences.

Compare aligned sequences

All sequences, including the unknown sequence, are from the same multiple alignment.
This ensures that sequence positions match up across all sequences but also means that
a lot of gap characters ('-') are inserted. To compute similarities between such se-
quences you need to make function much like seqeuence_similarity that does not con-
sider sequence positions where both bases are a gap ('-') characters. In other words,
you must not only count the number of characters that are the same, you also need to
count how many alignment columns that are "-" for both sequences. E.g. the following
mini alignment has five such columns and four columns where the bases are the same.
So in the following alignment, the similarity is 0.8 (4/5):

A-CT-A
A-CTTA

Write a function alignment_similarity that takes two arguments:

1. A string which is a DNA sequence with gap characters.
2. A string of the same length as argument one, which is also a DNA sequence with

gap characters.

The function must return:

• A float, which is the proportion of bases that are the same in two DNA sequences.

197

alignment_similarity('A-CT-A', 'A-CTTA')

should return 0.8.

Hint

Use an if-statement to test if the two characters at some index are equal to '-'
in both sequences. You can use an expression like this:

seq1[i] == '-' and seq2[i] == '-'

Once your function has computed both the number of identical bases and the number
of alignment columns that are not both '-', you can have it return the similarity as the
ratio of the two.

Read the HIV sequences into your program

To use your alignment_similarity function to assess similarity between your unknown
sequence and the sequences of known subtype, you need to read the sequences into
your program. Here is a function that will read the sequences from one of the files you
downloaded into a list:

def read_data(file_name):
f = open(file_name)
sequence_list = list()
for line in f:

seq = line.strip()
sequence_list.append(seq)

f.close()
return sequence_list

You can use that function to read the unknown sequence into your program:

unknown_list = read_data('unknown_type.txt')

In this case, the list only contains the one unknown HIV sequence in unknown_type.txt.

You also need to load the typed HIV sequences into your program. Here is a function
that returns a dictionary in which the keys are subtypes ('A', 'B', 'C' and 'D') and each
value is a lists of sequences with that subtype:

198

def load_typed_sequences():
return {'A': read_data('subtypeA.txt'),

'B': read_data('subtypeB.txt'),
'C': read_data('subtypeC.txt'),
'D': read_data('subtypeD.txt') }

If you use the function like this:

typed_data = load_typed_sequences()

then you can access the list of sequences of subtype A like this: typed_data['A'].

Compare your HIV sequence to HIV sequences of known
subtype

To type you HIV sequence you must compare your sequence to all the database se-
quences to see which group has the best matching sequence.

Write a function get_similarities that takes two arguments:

1. A string, which is your unknown HIV sequence.
2. A list of strings, each of which is an HIV sequence of known type.

The function must return:

• A list of floats, which should be the similarities between the unknown sequence
given as the first argument and the list of sequences given as the second argument.

Example usage:

get_similarities(unknown_list[0], typed_data['A'])

should return:

[0.8553288474061211, 0.8721742704480066,
0.854924397221087, 0.8481709291032696,
0.8498330281159108]

The function should use the function alignment_similarity to compare your unknown
sequence (unknown_list[0]) to each of the sequences of some subtype. Start out like
this:

199

def get_similarities(unknown, typed_sequences):
Your code here...

In your function you need to define a list that you can append the similarities you com-
pute to:

similarities = []

This is the list of results that your function must return. To compute the similarity
between you unknown sequence and each of the sequences of known subtype, you can
use your alignment_similarity function inside a for-loop.

Compute maximum similarity to each subtype

To predict the subtype of the unknown HIV sequence you need to compare the un-
known sequence to all the sequences of each of the different subtypes. The subtype
of the sequence with the highest similarity to your unknown sequence is then our pre-
dicted subtype (or our best guess).

Write a function get_max_similarities that takes two arguments:

1. A string, which is your unknown HIV sequence.
2. A dictionary, like the one returned by load_typed_sequences.

The function must return:

• A dictionary, in which keys are strings representing each subtype ('A', 'B', 'C',
and 'D') and values are floats representing the maximum similarity between the
unknown sequence and the sequences of a subtype. The dictionary could look like
this (it does not, you need to compute the similarities yourself.):

{'A': 0.89, 'B': 0.95, 'C': 0.82, 'D': 0.99}

To get the highest number in a list of numbers, you can use the max function in Python.
It works like this:

numbers = [3, 8, 53, 12, 7]
print(max(numbers)) # prints 53

For example, to get the highest similarity between the unknown sequence and
sequences in typed_data['A']:

200

subtypeA_similarities = get_similarities(unknown_list[0], typed_data['A'])
subtypeA_max = max(subtypeA_similarities)

Identify the HIV subtype

Now for the grand finale! You ultimately want to be able to write code like this:

unknown_list = read_data('unknown_type.txt')
typed_data = load_typed_sequences()
subtype = predict_subtype(unknown_list[0], typed_data)
print("Patient HIV is subtype {}".format(subtype))

So all you need now is the predict_subtype function.

Write a function predict_subtype that takes two arguments:

1. A string, which is your unknown HIV sequence.
2. A dictionary, like the one returned by load_typed_sequences.

The function must return:

• A string of length one (either 'A', 'B', 'C', or 'D') representing the predicted
subtype of your unknown HIV sequence.

The function should use get_max_similarities to compute the dictionary of max simi-
larities and then extract from that dictionary the key with the highest value (similarity).
So the function must return 'A' if the unknown sequence is most similar to a sequence
of subtype A, 'B' if the unknown sequence is most similar to a sequence of subtype B
and so on.

201

24 Sequence trees

This chapter is about clustering sequence based on the evolutionary distance between them.

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

• seqdistproject.py is an empty file where you must write your code.
• test_seqdistproject.py is the test program that lets you test the code you write

in translationproject.py.

Put the files in a folder dedicated to this project. On most computers you can right-click
on the link and choose “Save file as. . . ” or “Download linked file”.

Measuring sequence distance

Clustering is based on the distances between all pairs of sequences. So before you can
build your tree you must compute those distances and fill them into a table like that in
the book. Here we break that task into three parts:

1. Compare two sequences
2. Make the Jukes-Cantor correction
3. Generate a (lower triangular) distance matrix

Compare two sequences

The first function you must write is one that finds the proportion of different bases
between two sequences:

Write a function, sequence_difference, which takes two arguments:

1. A string, which represents a DNA sequence.
2. A string, which represents a DNA sequence of the same length as argument one.

The function must return:

• A float, which represents the proportion of different bases between the two se-
quences.

203

https://munch-group.org/bioinformatics/supplementary/project_files

Example usage:

sequence_difference('AAATTAAA', 'AAAAAAAA')

should return

0.25

Make the Jukes-Cantor correction

To take into account that some substitutions may fall on top of others you must do the
Jukes-Cantor correction you read about in the book. The formula is like this:

K = 3
4

ln(1 4
3

D)

Where D is the proportion of differences as returned by seqeunce_diff and K is the
Jukes-Cantor corrected distance. In the top of seqdistproject.py it already says:

from math import log

That line makes the log (logarithm) builtin function from the math python library avail-
able to your programme. Try to find its Python documentation to see how you use
it.

Write a function, jukes_cantor, which takes one argument:

1. A float, which represents a proportion of different bases between two sequences.

The function must return:

• A float, which represents the Jukes-Cantor corrected distance corresponding the
proportion of differences given as argument.

Example usage:

jukes_cantor(0.1)

should return

0.10732563273050497

204

Lower triangular distance matrices

This project is all about distances between pairs (of sequences), and what would be
more natural than to put all the distances in a matrix so you can look up the distance
between the sequences with indexes i and j as the matrix element in row i and column
j. You already know how matrices can be represented by lists of lists. E.g. a matrix like
this:

can be expressed as a list of lists like this:

[[0.0, 0.1, 0.3, 0.3, 0.1, 0.2],
[0.1, 0.0, 0.2, 0.4, 0.1, 0.1],
[0.3, 0.2, 0.0, 0.4, 0.2, 0.3],
[0.3, 0.4, 0.4, 0.0, 0.2, 0.1],
[0.1, 0.1, 0.2, 0.2, 0.0, 0.1],
[0.2, 0.1, 0.3, 0.1, 0.1, 0.0]]

Notice how the diagonal is all zeros because these distances represent the distance of
a sequence to itself. Also, notice that the part above the diagonal is a mirror the part
below the diagonal (in bold). This is all a bit redundant, especially in this project where
you will have to reduce the matrix as you group (or cluster) sequences together. We
want something nice and lean where we only have the numbers we need – and that is
the lower triangular matrix:

0.1
0.3 0.2
0.3 0.4 0.4
0.1 0.1 0.2 0.2
0.2 0.1 0.3 0.1 0.1

In Python this is still just a list of lists, only, each sublist now has the same length as its
index in the big list (E.g. [0.3, 0.2] has index 2 in the list and has length 2):

matrix = [[],
[0.1],
[0.3, 0.2],
[0.3, 0.4, 0.4],
[0.1, 0.1, 0.2, 0.2],
[0.2, 0.1, 0.3, 0.1, 0.1]]

Here I am just writing it nicely. If you where to print that list of lists it would look like
this:

205

[[], [0.1], [0.3, 0.2], [0.3, 0.4, 0.4], [0.1, 0.1, 0.2, 0.2], [0.2, 0.1, 0.3, 0.1, 0.1]]

Say your sequences had names: A, B, C, D, E, and F, then the above data structure
represents distances between each pair like this:

A
B 0.1
C 0.3 0.2
D 0.3 0.4 0.4
E 0.1 0.1 0.2 0.2
F 0.2 0.1 0.3 0.1 0.1

A B C D E F

There is only one drawback with this reduced representation of the full square matrix:
In the full matrix you can get the distance between the sequences with indexes i and j
as both matrix[i][j] and matrix[j][i] because the part above and below the diagonal
are the same. Using the lower triangular matrix, you must always use the largest index
first. Using the smaller one first will give you an IndexError. So if you want the dis-
tance between sequences with index 2 and 4, you must use the bigger index first (as the
row index): matrix[4][2].

Generate a distance matrix

Write a function, lower_trian_matrix, which takes one argument:

1. A list of strings. All strings have equal length and represent DNA sequences.

The function must return:

• A list of lists of floats, which represent the lower triangular matrix of Jukes-Cantor
distances between DNA sequences given as argument.

Example usage:

sequences = ['TAAAAAAAAAAA',
'TTAAAAAAAAAA',
'AAAAAAAAAAGG',
'AAAAAAAAGGGG']

lower_trian_matrix(sequences)

here lower_trian_matrix should return:

206

[[],
[0.08833727674228764],
[0.30409883108112323, 0.4408399986765892],
[0.6081976621622466, 0.8239592165010822, 0.18848582121067953]]

You should use sequence_difference to compute the proportion of differences between
each pair of sequences and jukes_cantor to produce the corrected distance to fill into
the matrix.

Start by figuring out what pairs of indexes you need and then figure out how you can
make two nested for-loops generate them. Remember that the length of each sublist is
equal to its index in the big list.

Clustering

Now that you have the distance matrix you are ready for the actual clustering. There
are three steps to that:

1. Find the pair you want to join
2. Compute the distances between the joined pair and all other elements (linkage)
3. Keep going until you only have one left

Depending on how you choose which pair to join and how you compute the new dis-
tances for the joined pair determines what kind of clustering you do. Here we will try
a centroid-like linkage called WPGMA. It does not work as well as UPGMA but is a bit
easier to implement (you can look up WPGMA on wikipedia).

Find the pair to join

Here you want to be able to find the pair with the smallest distance. To do that we
identify the cell in the matrix with the smallest value:

Write a function, find_lowest_cell, which takes one argument:

1. A list of lists, which represents a lower triangular distance matrix as returned by
lower_trian_matrix.

The function must return:

• A list of two integers, which represent the row and column index of the cell with
the smallest value in the matrix.

207

Remember that the row index is always smaller than the column index. The two in-
dexes tell you which two elements to join next.

Example usage: Assuming that matrix is the lower triangular matrix returned by
lower_trian_matrix in the previous example, then

find_lowest_cell(matrix)

Should return

[1, 0]

Decide on a linkage method

You also need a function that computes a new distance from two original ones using
the the centroid-like linkage we have decided to use.

Write a function, link, that takes two arguments:

1. A float, which represents a matrix element.
2. A float, which represents another matrix element.

The function must return:

• A float, which is the average of the two arguments

Example usage:

link(0.4, 0.2)

Should return:

0.3

Perform the clustering

The three functions that do the actual clustering are complicated but you should be able
to follow what they do. The first one updates the table to reflect that you join a pair. The
second updates the list of sequence names (labels) to reflect that you joined a pair. The
last one uses the two other functions to cluster pair until there is only one cluster left.

Your task is to carefully type the code for each function and to understand what every
line of code does.

208

Updating labels

The function update_labels takes three arguments:

1. A list of strings representing sequence names.
2. An integer representing the index of a sequence name.
3. An integer representing the index of another sequence name.

The function does not return anything, but it updates the list of names to reflect that
you joined a pair. If your list looks like this before you call the function:

labels = ['A', 'B', 'C', 'D']

Then after you call the function like this update_labels(labels, 1, 0), the list will look
like this:

['(A,B)', 'C', 'D']

Here is the function:

def update_labels(labels, i, j):

turn the label at first index into a combination of both labels
labels[j] = "({},{})".format(labels[j], labels[i])

Remove the (now redundant) label in the first index
del labels[i]

Updating the matrix

The function update_table takes three arguments:

1. A list of lists, which represents a lower triangular distance matrix.
2. An integer representing the index of one of the elements to join.
3. An integer representing the index of the other element to join.

The way this function is implemented, it is assumed that the second argument is always
larger than the third argument. I.e. the second argument is a row index and the third
argument is a column index.

The function does not return anything, but it updates the matrix to reflect that a pair
has been joined. If your matrix looks like this before you call the function:

209

m = [[], [0.1], [0.3, 0.4], [0.6, 0.8, 0.2]]

Then after you call the function like this update_table(m, 1, 0), the matrix will look
like this:

[[], [0.35], [0.7, 0.2]]

Here is the function:

def update_table(table, a, b):

For the lower index, reconstruct the entire row (ORANGE)
for i in range(0, b):

table[b][i] = link(table[b][i], table[a][i])

Link cells to update the column above the min cell (BLUE)
for i in range(b+1, a):

table[i][b] = link(table[i][b], table[a][i])

Link cells to update the column below the min cell (RED)
for i in range(a+1, len(table)):

table[i][b] = link(table[i][b], table[i][a])

Delete cells we no longer need (lighter colors)
for i in range(a+1, len(table)):

Remove the (now redundant) first index column entry
del table[i][a]

Remove the (now redundant) first index row
del table[a]

The colors refer to cell colors on the slide you I showed you at the lecture.

Do the clustering

Now onto the real task, the actual clustering. The function cluster takes two argu-
ments:

1. A list of strings representing DNA sequences of equal length.
2. A list of strings representing sequence names.

The function returns:

210

• A string representing the generated clustering.

Here is the function:

def cluster(sequences, names):

table = lower_trian_matrix(sequences)
labels = names[:]

Until all labels have been joined...
while len(labels) > 1:

Locate lowest cell in the table
i, j = find_lowest_cell(table)

Join the table on the cell co-ordinates
update_table(table, i, j)

Update the labels accordingly
update_labels(labels, i, j)

Return the final label
return labels[0]

Here is a simple example of how you can use your new clustering code:

names = ['A', 'B', 'C', 'D']
sequences = ['TAAAAAAAAAAA',

'TTAAAAAAAAAA',
'AAAAAAAAAAGG',
'AAAAAAAAGGGG']

tree = cluster(sequences, names)
print(tree)

On your own

From here on you are on your own. If you find a FASTA file with aligned (ungapped)
homologous sequences, you can use the function below to read it into your program
and try your code out on real-world sequences. I will leave it to you to figure out how
it works.

211

def read_fasta(filename):
f = open(filename, 'r')
record_list = []
header = ""
sequence = ""
for line in f:

line = line.strip() ## get rid of whitespace and newline
if line.startswith(">"):

if header != "": ## if it is the first header
record_list.append([header, sequence])
sequence = ""

header = line[1:]
else:

sequence += line
record_list.append([header, sequence])
return record_list

212

25 Finding genes

This chapter is a programming project where you will find open reading frames in the genome of
a particularly virulent strain of E. coli.

In this project, you will analyze DNA to identify the open reading frames (ORFs) and
the proteins they encode.

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

• e_coli_O157_H157_str_Sakai.fasta contains the full genome of the Escherichia
coli O157:H7 Sakai strain (yes the full genome).

You also need to download the two project files:

• orfproject.py is an empty file where you must write your code.
• test_orfproject.py is the test program that lets you test the code you write in

orfproject.py.

Put all three files in a folder dedicated to this project. On most computers you can
right-click on the link and choose “Save file as. . . ” or “Download linked file”.

Four your convenience, the file orfproject.py already contains three global constants
(variables that must never be changed by the code). One is a dictionary codon_map,
which maps codons to letters that represent amino acids. The other two are a string,
start_codon, and a list, stop_codons. You can refer to these three variables in your
code, but obviously, never change them.

The project has three parts.

1. In the first part of the project, you will write the code necessary to identify ORFs
in a long genomic sequence.

2. In the second part, you will use the code you wrote on the programming project
about translating DNA to translate each ORF into a protein sequence.

3. In the third part, you will use the code from parts one and two together to find
candidate proteins encoded by ORFs in a genomic sequence.

213

https://munch-group.org/bioinformatics/supplementary/project_files

Start by reading through the exercise before you do anything else. That way you have
a good overview of the tasks ahead. Here is a mind map of how we split the larger
problem into smaller bits and how they fit together:

Figure 25.1: Overview

Finding Open Reading Frames

Find the start positions of ORFs in a DNA sequence

The first task is to write a function that finds all the possible positions where an ORF
can begin.

Write a function, find_start_positions, which takes one argument:

1. A string, which is a DNA sequence.

The function must return:

214

• A list of integers, which represent the indexes of the first base in start codons in
the DNA sequence argument.

Example usage:

find_start_positions('TATGCATGATG')

should return

[1, 5, 8]

Your function should contain a for-loop that iterates over all possible positions in a
DNA string where a codon can begin. Not surprisingly, these are all the positions except
for the last two. So start out with this:

def find_start_positions(seq):
for i in range(len(seq) - 2):

print(i)

Now, instead of just printing i, try and make it print the three bases following i using
the slicing technique:

triplet = seq[i:i+3]

I.e. if your sequence is 'TATGCATGATG' it should first print 'TAT' then 'ATG' then 'TGC'
and so on.

When you have this working you should change the code so that triplets are only
printed if they are start codons. You can use an if-statement that tests if each triplet
is equal to start_codon.

Then try and make your function print i only when i is the first base of a start codon.

Finally, modify the function so all the relevant values of i are collected in a list using
the same technique as in the split_codons(orf) function, and then return this list from
the function.

215

Finding the next occurrence of some codon in an ORF

Now that you can find where the ORFs begin in our sequence you must also be able to
identify where each of these end. As you know, an ORF ends at any of three different
stop codons in the same reading frame as the start codon. So, starting at the start codon
of the ORF, we need to be able to find the next occurrence of some specific codon. I.e.
you should look at all codons after the start codon and find the first occurrence of some
specified codon. If the function does not find that codon in the string it should return
None.

Write a function, find_next_codon, that takes three arguments:

1. A string, which is the DNA sequence.
2. An integer, which is the index in the sequence where the ORF starts.
3. A string, which is the codon to find the next occurrence of.

The function must return:

• An integer, which is the index of the first base in the next in-frame occurrence of
the codon. If the function does not find that codon in the string it should return
None.

Example usage:

find_next_codon('AAAAATTTAATTTAA', 1, 'TTT')

should return

10

Your function should contain a for-loop that iterates over all the relevant starts of
codons. Remember that no valid codon can start at the last two positions in the
sequence. E.g. if the second argument is 7 and the length of the sequence is 20 then the
relevant indexes are 7, 10, 13, 16.

Start by writing a function just with a for-loop that lets you print these indexes pro-
duced by range. Figure out how to make the range function iterate over the appropriate
numbers.

def find_next_codon(seq, start, codon):
for idx in range(??):

print(idx)

216

When you have that working, use the slicing technique to instead print the codons that
start at each index.

Finally, add an if-statement that tests if each codon is equal to codon. When this is true,
the function should return the value of idx.

Finding the first stop codon in an ORF

Now that you can find the next occurrence of any codon, you are well set up to write
a function that finds the index for the beginning of the next in-frame stop codon in an
ORF.

Write a function, find_next_stop_codon, that takes two arguments:

1. A string, which is the DNA sequence.
2. An integer, which is the index in the sequence where the ORF starts.

The function must return:

• An integer, which is the index of the first base in the next in-frame stop codon. If
there is no in-frame stop codon in the sequence the function should return None.

Example usage:

find_next_stop_codon('AAAAATAGATGAAAA', 2)

should return

5

Here is some inspiration:

1. You should define a list to hold the indexes for the in-frame stop codons we find.
2. Then we loop over the three possible stop codons to find the next in-frame oc-

currence of each one from the start index. You can use find_next_codon for this.
Remember that it returns None if it does not find any. If it does find a position you
can add it to your list.

3. At the end, you should test if you have any indexes in your list.
4. If you do, you should return the smallest index in the list. I.e the ones closest to

the start codon.
5. If you did not find any stop codons the function must return None to indicate this.

217

Finding ORFs

Now you can write a function that uses find_start_positions and find_next_stop_codon
to extract the start and end indexes of each ORF in a genomic sequence.

Write a function, find_orfs, that takes one argument:

1. A string, which is a DNA sequence.

The function should return:

• A list, which contains lists with two integers. The list returned must contain a
list for each ORF in the sequence argument. These lists each contain two integers.
The first integer represents the start of the ORF, the second represents the end.
The function should handle both uppercase and lowercase sequences.

Example usage:

find_orfs("AAAATGGGGTAGAATGAAATGA")

should return

[[3, 9], [13, 19]]

Start by using find_start_positions to get a list of all the start positions in sequence:

def find_orfs(seq):
start_positions = find_start_positions(seq)

When you have that working, add a for-loop that iterates over the start positions. Inside
the for-loop, you can then get the next in-frame stop codon for each start position by
calling find_next_stop_codon. Try to print the start and end indexes you find to make
sure the code does what you think.

Finally, you need to add a [start, stop] list for each ORF to the big list that the function
returns. To append a list to a list you do write something like this:

orf_coordinate_list.append([start, stop])

Test your function. Chances are that some of the end positions you get are None. This
is because some of the start codons were not followed by an in-frame stop codon. Add
an if-statement to your function that controls that only start-stop pairs with a valid stop
coordinate are added to the list of results.

218

Translation of open reading frames

We need to translate the reading frames we find into the proteins they may encode. So
why not use the code you already wrote in the programming project where you trans-
lated open frames? Copy the content of translationproject.py into orfproject.py.
Now you can use the function translate_orf to translate your ORFs.

Put everything together

Read in genomic sequences

The file e_coli_O157_H157_str_Sakai.fasta contains the genome that we want to an-
alyze to find open reading frames. This is an especially nasty strain of Escherichia coli
O157:H7 isolated after a massive outbreak of infection in school children in Sakai City,
Japan, associated with consumption of white radish sprouts.

You can use the function below to read the genome sequence into a string.

def read_genome(file_name):
f = open(file_name, 'r')
lines = f.readlines()
header = lines.pop(0)
substrings = []
for line in lines:

substrings.append(line.strip())
genome = ''.join(substrings)
f.close()
return genome

Now for the grand finale: Using read_genome, find_orfs and translate_orf you can
write a function that finds all protein sequences produced by open reading frames in
the genome.

Write a function, find_candidate_proteins, that takes one argument:

1. A string, which is a genome DNA sequence.

The function must return

• A list of strings, which each represent a possible protein sequence.

219

https://www.ncbi.nlm.nih.gov/pubmed/10522649

Note that this is a full genome so finding all possible proteins will take a while (~5 min.).
You can start by working on the first 1000 bases:

Example usage:

genome = read_genome('e_coli_O157_H157_str_Sakai.fasta')
first_1000_bases = genome[:1000]
find_candidate_proteins(first_1000_bases)

should return

['MSLCGLKKESLTAASELVTCRE*', 'MKRISTTITTTITTTITITITTGNGAG*',
'MQNVFCGLPIFWKAMPGRGRWPPSSLPPPKSPTTWWR*', 'MPGRGRWPPSSLPPPKSPTTWWR*',
'MLYPISAMPNVFLPNF*', 'MPNVFLPNF*', 'MSCMALVC*', 'MALVC*']

The function should call find_orfs to get the list of start-end pairs. For each index
pair, you must then slice the ORF out of the sequence (remember that the end index
represents the first base in the stop codon), translate the ORF to protein, and add it to a
list of proteins that the function can return.

Hint

To check your result note that all returned sequences should start with a start
codon 'M', end with a stop codon '*' and contain no stop codons in the mid-
dle.

On your own

This is where this project ends, but you can continue if you like. Given a long list of
candidate proteins of all sizes, what would you do to narrow down your prediction to
a smaller set of very likely genes? If you have some ideas, then try them out.

• Maybe you can rank them by length? What is the expected minimum length of
proteins?

• Maybe you can look for a Shine-Delgarno motif upstream of the start codon? You
know how to do that from the lectures.

• You can also try to BLAST them against the proteins in Genbank. The true ones
should have some homologs in other species.

220

26 Genome assembly

This chapter is a programming project where you will assemble a small genomic sequence from
a set of short sequencing reads.

In genome assembly, many short sequences (reads) from a sequencing machine are as-
sembled into long sequences – ultimately chromosomes. This is done by ordering over-
lapping reads so that they together represent genomic sequences. For example, given
these three reads: AGGTCGTAG, CGTAGAGCTGGGAG, GGGAGGTTGAAA, ordering them based on
their overlap like this

AGGTCGTAG
CGTAGAGCTGGGAG

GGGAGGTTGAAA

produces the following genomic sequence:

AGGTCGTAGAGCTGGGAGGTTGAAA

Real genome assembly is, of course, more sophisticated than what we do here, but the
idea is the same. To limit the complexity of the problem, we make two simplifying
assumptions:

1. There are no sequencing errors, implying that true overlaps between reads can be
identified as perfectly matching overlaps.

2. No reads are nested in other reads. I.e., They are never a smaller part of another
read.

The second assumption implies that overlaps are always of this type:

CGTAGAGCTGGGAG
GGGAGGTTGAAA

and never of this type:

CGTAGAGCTGGGAG
AGAGCTG

221

In this project, you will be asked to write functions that solve the problem of assem-
bling a genomic sequence. Each function solves a small problem, and you may need to
call these functions inside other functions to put together solutions to larger subprob-
lems.

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

• sequencing_reads.txt contains the sequencing reads.

You also need to download the two project files:

• assemblyproject.py is an empty file where you must write your code.
• test_assemblyproject.py is the test program that lets you test the code you write

in assemblyproject.py.

Put the files in a folder dedicated to this project. On most computers you can right-click
on the link and choose “Save file as. . . ” or “Download linked file”.

Now open each file in your editor and look at what is in sequencing_reads.txt. (Do
not change it in any way, and do not save it after viewing. If your editor asks you if you
want to save it before closing, say no.) How many sequences are there in each file?

The project is split into four parts:

1. Read and analyze the sequencing reads.
2. Compute the overlaps between reads.
3. Find the right order of reads.
4. Reconstruct the genomic sequence.

Here is an overview of the functions you will write in each part of the project and of
which functions are used by other functions.

222

https://munch-group.org/bioinformatics/supplementary/project_files

Figure 26.1: Overview

Make sure to read the entire exercise and understand what you are supposed to do
before you begin!

Read and analyze the sequencing reads

The first task is to read and parse the input data. The sequence reads for the mini-
assembly are in the file sequencing_reads.txt. The first two lines of the file look like
this:

Read1 GGCTCCCCACGGGGTACCCATAACTTGACAGTAGATCTCGTCCAGACCCCTAGC
Read2 CTTTACCCGGAAGAGCGGGACGCTGCCCTGCGCGATTCCAGGCTCCCCACGGG

Each line represents a read. The first field on each line is the name of the read, and
the second field is the read sequence itself. So for the first line, Read1 is the name, and
ATGCG... is the sequence.

223

Read the sequencing reads into your program

Write a function, read_data, that takes one argument:

1. A string, which is the name of the data file.

The function must return

• A dictionary, where the keys are the names of reads and the values are the associ-
ated read sequences. Both keys and values must be strings.

Example usage:

read_data('sequencing_reads.txt')

should return a dictionary with the following content (maybe not with key-value pairs
in that order)

{'Read1': 'GGCTCCCCACGGGGTACCCATAACTTGACAGTAGATCTCGTCCAGACCCCTAGC',
'Read3': 'GTCTTCAGTAGAAAATTGTTTTTTTCTTCCAAGAGGTCGGAGTCGTGAACACATCAGT',
'Read2': 'CTTTACCCGGAAGAGCGGGACGCTGCCCTGCGCGATTCCAGGCTCCCCACGGG',
'Read5': 'CGATTCCAGGCTCCCCACGGGGTACCCATAACTTGACAGTAGATCTC',
'Read4': 'TGCGAGGGAAGTGAAGTATTTGACCCTTTACCCGGAAGAGCG',
'Read6': 'TGACAGTAGATCTCGTCCAGACCCCTAGCTGGTACGTCTTCAGTAGAAAATTGTTTTTTTCTTCCAAGAGGTCGGAGT'}

Here is some scaffolding code to get you started:

def read_data(file_name):
input_file = open(file_name)
...
for line in input_file:

...
...

input_file.close()

The line variable in the for loop holds each line in the file, including the \n newline
character at the end. You can use the’ split’ method of strings to split each line into
the name of the read and the read sequence. You can see the documentation for that
method by typing pydoc str.split in your terminal.

224

Compute the mean length of reads

After writing that function, we would like to get an idea about the length of the reads.
There are often too many reads to look at manually, so we need to make a function that
computes the mean length of the reads.

Write a function, mean_length, that takes one argument:

1. A dictionary, in which keys are read names and values are read sequences (this is
a dictionary like that returned by read_data).

The function must return

• A float, which is the average length of the sequence reads.

One way to do this is to loop over the keys in the dictionary like this:

def mean_length(reads):
count = 0
total = 0
for name in reads:

seq = reads[name]
...
...

...
return total / count

Remember that you can use the len function to find the length of a read.

Compute overlaps between reads

The next step is to determine which reads overlap each other. We need a function that
takes two read sequences and computes their overlap to do that. Remember that in the
input data, none of the reads are completely nested in another read.

Compute the overlap between two reads

We know there are no sequencing errors so that the sequence match will be perfect in
the overlap. To compute the overlap between the 3’ (right) end of the left read with the
5’ (left) end of the righthand read, you need to loop over all possible overlaps, honoring
that one sequence is the left one and the other is the right one. In the for loop, start with
the largest possible overlap (min(len(left), len(right))) and evaluate smaller and
smaller overlaps until you find an exact match.

225

Write a function, get_overlap, that takes two arguments

1. A string, which is the lefthand read sequence.
2. A string, which is the righthand read sequence.

The function must return

• A string, which is the overlapping sequence. If there is no overlap, it should
return an empty string.

Example usage:

s1 = "CGATTCCAGGCTCCCCACGGGGTACCCATAACTTGACAGTAGATCTC"
s2 = "GGCTCCCCACGGGGTACCCATAACTTGACAGTAGATCTCGTCCAGACCCCTAGC"
get_overlap(s1, s2)

should return the string

'GGCTCCCCACGGGGTACCCATAACTTGACAGTAGATCTC'

and get_overlap(s2, s1)

should return the string

'C'

From these two examples, it seems that s1 and s2 overlap and that s1 is the left and s2
is the right. Treating s2 as the left one and s1 as the right one only gives an overlap of
one base (we expect a few bases of overlap even for unrelated sequences).

Compute all read overlaps

When you have written get_overlap, you can use it to evaluate the overlap between all
pairs of reads in both left-right and right-left orientations.

Write a function, get_all_overlaps, that takes one argument:

1. A dictionary with read data as returned by read_data.

The function must return

226

• A dictionary of dictionaries specifying the number of overlapping bases for a pair
of reads in a specific left-right orientation. Computing the overlap of a read to
itself is meaningless and must not be included. Assuming the resulting dictionary
of dictionaries is called d, then d['Read2'] will be a dictionary where keys are the
names of reads that have an overlap with read 'Read2' when 'Read2' is put in the
left position, and the values for these keys are the number of overlapping bases
for those reads.

Example usage: assuming that reads is a dictionary returned by read_data then:

get_all_overlaps(reads)

should return the following dictionary of dictionaries (but not necessarily with the same
ordering of the key-value pairs):

{'Read1': {'Read3': 0, 'Read2': 1, 'Read5': 1, 'Read4': 0, 'Read6': 29},
'Read3': {'Read1': 0, 'Read2': 0, 'Read5': 0, 'Read4': 1, 'Read6': 1},
'Read2': {'Read1': 13, 'Read3': 1, 'Read5': 21, 'Read4': 0, 'Read6': 0},
'Read5': {'Read1': 39, 'Read3': 0, 'Read2': 1, 'Read4': 0, 'Read6': 14},
'Read4': {'Read1': 1, 'Read3': 1, 'Read2': 17, 'Read5': 2, 'Read6': 0},
'Read6': {'Read1': 0, 'Read3': 43, 'Read2': 0, 'Read5': 0, 'Read4': 1}}

Hint

You can use the get_overlap function you just made to find the overlap be-
tween a pair of reads. To generate all combinations of reads, you need two
for-loops. One looping over reads in the left position, and another (inside the
first one) looping over reads in the right position. Remember that we do not
want the overlap of a read to itself, so there should be an if-statement checking
that the left and right reads are not the same.

Print overlaps as a nice table

The dictionary returned by get_all_overlaps is a bit messy. We want to print it in a nice
matrix-like format so we can better see which pairs overlap in which orientations.

This pretty_print function should take one argument:

1. A dictionary of dictionaries as returned by get_all_overlaps.

The function should not return anything but must print a matrix exactly as shown in
the example below with nicely aligned and right-justified columns. The first column
must hold names of reads in left orientation. The top row holds names of reads in right

227

orientation. The remaining cells must each have the number of overlapping bases for
a left-right read pair. The diagonal corresponds to overlaps with the read itself. You
must put dashes in these cells.

Example usage: assuming that overlaps is a dictionary of dictionaries returned by
get_all_overlaps then:

pretty_print(overlaps)

should print exactly

Read1 Read2 Read3 Read4 Read5 Read6
Read1 - 1 0 0 1 29
Read2 13 - 1 0 21 0
Read3 0 0 - 1 0 1
Read4 1 17 1 - 2 0
Read5 39 1 0 0 - 14
Read6 0 0 43 1 0 -

This function is hard to get completely right. So, to spare you the frustration, this one
is on me:

def pretty_print(d):
print(' ', end='')
for j in sorted(d):

print("{: >6}".format(j), end='')
print()
for i in sorted(d):

print("{: >6}".format(i), end='')
for j in sorted(d):

if i == j:
s = ' -'

else:
s = "{: >6}".format(d[str(i)][str(j)])

print(s, end='')
print()

Make sure you understand how it works. You can look up in the documentation what
"{: >6}".format(i) does.

228

Find the correct order of reads

Now that we know how the reads overlap, we can chain them pair by pair from left
to right to get the order in which they represent the genomic sequence. To do this, we
take the first (left-most) read and identify which read has the largest overlap at its right
end. Then we take that read and find the read with the largest overlap to the right end
of that - until we reach the rightmost (last) read.

Find the first read

The first thing you need to do is to identify the first (leftmost) read so we know where
to start. This read is identified as the one that has no significant (>2) overlaps to its
left end (it only has a good overlap when positioned to the left of other reads). In the
example output from pretty_print above, the first read would be read 'Read4' because
the 'Read4' column has no significant overlaps (no one larger than two).

We break the problem in two and first write a function that gets all the overlaps to the
left end of a read (i.e., when it is in the right position):

Write a function, get_left_overlaps, that takes two arguments:

1. A dictionary of dictionaries as returned from get_all_overlaps.
2. A string, which represents the name of a read.

The function must return

• A sorted list of integers, which represent the overlaps of other reads to its left end.

Example usage: assuming that overlaps is a dictionary of dictionaries returned by
get_all_overlaps then.

get_left_overlaps(overlaps, 'Read1')

should return

[0, 0, 1, 13, 39]

Hint

Once you have made a list of left overlaps, you can use the built-in function
sorted to make a sorted version of the list that you can return from the func-
tion.

229

OK, now that we have a function that can find all the overlaps to the left end of a given
read, all we need to do is find the particular read with no significant (>2) overlaps to its
left end.

Write a function, find_first_read, that takes one argument:

1. A dictionary of dictionaries as returned from get_all_overlaps.

The function must return

• A string containing the name of the first read.

Example usage: assuming that overlaps is a dictionary of dictionaries returned by
get_all_overlaps then.

find_first_read(overlaps)

should return

'Read4'

Find the order of reads

Now that we have the first read, we can find the correct order of the reads. We want a
list of the read names in the right order.

Given the first (left) read, the next read is the one that has the largest overlap to the
right end of that read. We use our dictionary of overlaps to figure out which read that
is. If the first read is 'Read4', then overlaps['Read4'] is a dictionary of reads with
overlap to the right end of read 'Read4'. So, to find the name of the read with the
largest overlap, you must write a function that finds the key associated with the largest
value in a dictionary. We do that first:

Write a function, find_key_for_largest_value, that takes one argument:

1. A dictionary.

The function must return the key associated with the largest value in the dictionary
argument.

Having written find_key_for_largest_value, you can use it as a tool in the function
that finds the order of reads:

Write a function, find_order_of_reads, that takes two arguments:

1. A string, which is the name of the first (left-most) read (that is returned by
find_first_read).

230

2. A dictionary of dictionaries of all overlaps (that returned by get_all_overlaps).

The function must return

• A list of strings, which are read names in the order in which they represent the
genomic sequence.

Hint

You know the first read is given by the first argument to the function. You also
know that you can find the next read in the chain of overlapping reads by using
the find_key_for_largest_value function. You should keep adding reads to
the chain as long as the overlap is larger than two (you can use a for loop with
an if statement inside to check that the overlap is larger than 2).

Example usage: assuming that overlaps is a dictionary of dictionaries returned by
get_all_overlaps then:

find_order_of_reads('Read4', overlaps)

should return:

['Read4', 'Read2', 'Read5', 'Read1', 'Read6', 'Read3']

Before you implement the function, make sure you understand why this is the right list
of read names.

Reconstruct the genomic sequence

Now that you have the number of overlapping bases between reads and the correct
order of the reads, you can reconstruct the genomic sequence.

Reconstruct the genomic sequence from the reads

Write a function, reconstruct_sequence, that takes three arguments:

1. A list of strings, which are the names of reads in the order identified by
find_order_of_reads.

2. A dictionary, with read data as returned from read_data.
3. A dictionary of dictionaries with overlaps as returned from get_all_overlaps.

The function must return

231

• A string, which is the genomic sequence.

Example usage: assuming that order is the list of strings returned by find_order_of_reads,
that reads is the dictionary returned by read_data and that overlaps is a dictionary of
dictionaries returned by get_all_overlaps then:

reconstruct_sequence(order, reads, overlaps)

should return one long DNA string (I had to break it in three to make it fit on the
page):

TGCGAGGGAAGTGAAGTATTTGACCCTTTACCCGGAAGAGCGGGACGCTGCCCTGCGCGATT
CCAGGCTCCCCACGGGGTACCCATAACTTGACAGTAGATCTCGTCCAGACCCCTAGCTGGTA
CGTCTTCAGTAGAAAATTGTTTTTTTCTTCCAAGAGGTCGGAGTCGTGAACACATCAGT

Hint

Iterate over the reads in order and use the overlap information to extract and
join the appropriate parts of the reads.

Putting the whole thing together

Now that you have written functions to handle each step, you can write one last func-
tion that uses them to complete the entire assembly.

Write a function, assemble_genome, that takes one argument:

1. A string, which is the name of a file with sequencing reads in the format described
at the beginning of this project description.

The function must return

• A string, which is the genome assembled from the sequencing reads

Example usage:

assemble_genome('sequencing_reads.txt')

should return the assembled genome:

TGCGAGGGAAGTGAAGTATTTGACCCTTTACCCGGAAGAGCGGGACGCTGCCCTGCGCGATT
CCAGGCTCCCCACGGGGTACCCATAACTTGACAGTAGATCTCGTCCAGACCCCTAGCTGGTA
CGTCTTCAGTAGAAAATTGTTTTTTTCTTCCAAGAGGTCGGAGTCGTGAACACATCAGT

232

Part III

Web exercises

233

27 GWAS candidates

The purpose of this exercise is to expose you to the different kinds of information that
are stored in databases relevant to bioinformatics. It takes experience and skill to navi-
gate the user interface of these databases. Here, you will see a few important ones, but
there are many others. I have put a list at the end of this exercise with some additional
relevant ones on Brightspace. Browse them at your heart’s content.

Genome-wide association studies (GWAS) are a powerful tool in genetics and genomics
research to identify genetic variants associated with diseases or traits. When a signif-
icant SNP is identified in a GWAS, it is a genomic signpost tagging an associated ge-
nomic region. Still, it only partially reveals the genes causing the disease if the genomic
region identified contains several genes or genomic features. Investigating candidate
disease genes near a GWAS SNP involves: Exploring the genomic region around the
SNP. Studying nearby genes and regulatory elements. Evaluating their potential roles
in the disease or trait of interest. A standard GWAS only includes a select subset of the
SNPs in the genome. So, the most significant included SNP variant is rarely responsible
for the disease. Still, it is so close to the causal one that individuals with the causal SNP
variant carry it. The closer two SNPs are along the genome, the more likely they appear
together like this. The further away from each other, the more likely it is that genetic
recombination has removed this correlation.

Type 1 diabetes, often referred to as juvenile diabetes or insulin-dependent diabetes, is
a chronic autoimmune condition that affects how the body regulates blood sugar (glu-
cose). Unlike type 2 diabetes, which is commonly associated with lifestyle factors such
as obesity and physical inactivity, type 1 diabetes is not preventable and typically devel-
ops early in life, often during childhood or adolescence. In type 1 diabetes, the immune
system, usually responsible for defending the body against harmful invaders like bac-
teria and viruses, becomes misguided. It mistakenly identifies the insulin-producing
beta cells within the pancreas as foreign threats. This misrecognition triggers an au-
toimmune response, leading immune cells to launch an attack on these vital beta cells.
The pancreas, an organ located behind the stomach, is a key player in regulating blood
sugar levels. It consists of clusters of cells called the Islets of Langerhans, which house
the insulin-producing beta cells. When the immune system attacks these beta cells, it
results in their destruction or severe impairment. This process is thought to involve var-
ious immune cells, such as T-cells and antibodies, which play pivotal roles in autoim-
mune reactions. Due to this autoimmune attack, the pancreas gradually loses its ability
to produce insulin, a hormone with crucial responsibilities in maintaining proper blood
sugar balance. Insulin acts as a molecular key that unlocks the doors of cells throughout

235

the body, allowing glucose to enter and be used as an energy source. Think of insulin
as a bridge that facilitates the movement of glucose from the bloodstream into cells.
Research into type 1 diabetes is ongoing, and scientists are exploring potential cures
and better management strategies. However, until a cure is found, individuals with
type 1 diabetes continue to lead fulfilling lives by effectively managing their condition
through insulin therapy, a balanced diet, regular exercise, and closely monitoring their
blood sugar levels.

Browsing SNPs from a GWAS

Start by examining a Manhattan plot or list of significant SNPs obtained from a GWAS
study. We are going to select one of these SNPs and do further analysis. While doing
the analysis, note the SNP identifier (rsID) and its significance level (p-value). Go to
locuszoom.org and press the blue button shown on Figure 27.1:

Figure 27.1: Screenshot of the LocusZoom website

Now, you should be able to search for public GWAS studies. Copy/paste “Rare Genetic
Variants of Large Effect Influence Risk of Type 1 Diabetes” into the search bar. Only
one result should show up. Press it. Now, you are ready to examine the Manhattan
plot. You can see a lot of significant SNPs in the Manhattan plot, and you are welcome
to examine them, but the one we are interested in for this exercise is the one located
close to RSBN1. Click it, and it will zoom in. The SNP has an rsID of rs6679677, and its
position is 113.761.186 on chromosome 1. It’s a C to A mutation. Save this information
because we will use it for the rest of the exercise.

236

http://locuszoom.org

Exploring a genomic region

In this section, we are going to explore our SNP and its surrounding genomic regions
to identify our candidate gene/genes for diabetes type 1. Go to the UCSC Genome
Browser. In the “Human Assembly” drop-down, make sure it says “GRh38/hg38”.
That way, you access the genome assembly also used in the GWAS study. If you choose
another one, the SNP and gene coordinates will be different. Now paste your SNP
identifier rs6679677 into the search field where it says “Position/Search Term” and click
GO. You will get a list of search results. Clicking the link in the top one (if it says
rs6679677) should take you to a page centered on this SNP looking something like the
one shown in Figure 27.2:

Figure 27.2: Screenshot of the UCSC genome browser

Now, you see the SNP in a window. You can play around with the zoom function until
you start seeing a couple of other SNP IDs. Now we want to look at surrounding genes,
so scroll down to the “Genes and Gene predictions” Section. All the options you see
here are called “tracks”, and they all contain different information about the genome. If
you want to look at the annotated gene, select the “GENCODE V44” select “pack” and
press refresh on the right side of the section. Play around with the different settings
(pack, dense, squish, all). They all give you a different amount of information. Select
the one that you are most comfortable with when exploring. You might have to change
it for some types of questions. “Pack” is a good place to start.

237

https://genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome.ucsc.edu/
https://genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome.ucsc.edu/

Exercise 27-1

Play around with the zoom function. To the left of where you inserted the SNP ID is
the size of the window you are looking at. The more you zoom out, the more genes you
will be able to see.

Exercise 27-2

Identify nearby genes, including their names, locations, and orientations. Remember
that linkage means that the causal gene may not be the one closest to the GWAS SNP.
Are there any genes located close to the SNP of interest? If yes. Note them down for
further analysis.

Exercise 27-3

What is the genomic context (e.g., intronic, intergenic) of the SNP?

Exercise 27-4

You see the same gene multiple times in the gene track. Why do you think that is?

Exercise 27-5

Try to select other tracks such as promoters (EPDnew Promoters) and regulatory el-
ements (ENCODE Regulation). See if there are known regulatory elements, such as
enhancers or promoters, in the vicinity of the SNP.

Exercise 27-6

Are there any annotated regulatory elements near the SNP that might influence gene
expression? Try to press the regulatory track. What kind of information does this track
represent? (Hint: Read the description of the track).

238

Gathering information about genes

Now, we are ready to look at the genes we are interested in relation to our SNP. For
this, we will use 3 well-known databases. The goal is to identify which genes are the
potential cause of type 1 diabetes. Take your genes to each of the websites and use the
information they give you to see which genes can be related to diabetes.

• NCBI Gene
• ENSEMBL
• Genecards

It’s important to understand what kind of information these sites provide and their
intentions. So, let us do some light exploration.

Exercise 27-7

Google “NCBI”. What is it, and who administers it? Do the same with ENSEMBL.
What’s its function, and who administers it?

Exercise 27-8

On the NCBI Gene website, the drop-down menu shows “gene”, but other databases
on NCBI exist. Get yourself an overview. Do you recognize other databases? Some you
don’t know?

Exercise 27-9

When a gene is found in the “About this gene” section at ENSEMBL, try to press “phe-
notypes” if there are any. Do you see diabetes for any of the genes?

Exercise 27-10

The Genecards resource is different from the two other databases. Can you list two
major differences?

239

https://www.ncbi.nlm.nih.gov/gene/
https://www.ensembl.org
https://www.genecards.org

Exercise 27-11

By now, you should have a feeling for the databases and their goals. NCBI and EN-
SEMBL store the same sequence information, so it is mostly about which site presents
data in the most useful way for the task at hand. Which one is your favorite one and
why? Which of the genes are related to Type 1 Diabetes? If you can’t find a related gene,
go back to “Accessing the UCSC Genome Browser and make initial exploration” and
look at your tracks again. You may have missed it.

Exercise 27-12

With the gene you now have chosen, answer the following questions by using the 3
above databases.

1. How long is the entire of the gene (in bp or kb)?
2. How many transcripts of the gene are in NCBIs “Transcript table”?
3. Does Ensembl and NCBI show the same number of transcripts?
4. In the graphical representation of a gene, how are exons and introns depicted at

ENSEMBL and NCBI?
5. At ENSEMBL, try to click on the UniprotKN identifier. This takes you to a page

in the “UniProt” database. Can you retrive the amino acid sequence? - Do that.

Exploring tissue expression

In this step, we are interested in investigating our gene’s expression. Or multiple genes
if we have yet to choose a specific gene. Expression analysis will help us understand the
genes better. Go to the GTEx Portal (https://www.gtexportal.org/home/) and search
for the gene/genes associated with your SNP to see their expression profiles across
tissues. Explore tissue-specific gene expression data for the identified genes. In which
tissues is the gene(s) expressed, and is there any tissue where its expression is notably
higher? You may know “EBV-transformed lymphocytes” as “lymphocytes” cells. They
are important to the immune system.

Exercise 27-13

In which tissues is the gene(s) typically expressed, and are there variations in expression
levels across different tissues?

240

Exercise 27-14

Do the expression profiles make sense with the information you got from the other
databases? Do you expect to see certain tissues with a high expression? Other with a
low? Is it relevant to the disease we are investigating?

Exercise 27-15

What can you infer about the potential functional relevance of the gene(s) in the context
of the disease or trait?

Hypotheses and Discussion

Based on the information gathered from UCSC, various gene databases, and GTEx, pro-
pose hypotheses about the potential role of the identified gene(s) in the disease or trait
associated with the SNP. Think about the importance of tissue-specific gene expression
in understanding disease mechanisms. Are there any other genes or regulatory ele-
ments near the SNP that could also be relevant to the disease or trait?

Exercise 27-16

Based on the genomic and expression data, what are your hypotheses regarding the
role of the identified gene(s) in the disease or trait?

Exercise 27-17

How might tissue-specific gene expression patterns provide insights into the disease
mechanism?

Exercise 27-18

Are there potential challenges or limitations in establishing causality between the
gene(s) and the disease?

241

Exercise 27-19

Summarize your findings and discuss the significance of investigating candidate dis-
ease genes near a GWAS SNP. Reflect on the challenges and limitations of this approach
in pinpointing causal genes for complex diseases.

Exercise 27-20

What did you learn from this exercise about the importance of exploring the genomic
context and tissue-specific gene expression in GWAS follow-up?

Exercise 27-21

How might these findings inform future research or therapeutic approaches for the
disease or trait?

242

28 CCR5-delta32

Human Immunodeficiency Virus targets immune cells

HIV (Human Immunodeficiency Virus) infects immune cells by specifically targeting
and binding to certain receptors on the surface of these cells. The primary immune cells
that HIV infects are CD4+ T cells (commonly known as T-helper cells), macrophages,
and dendritic cells. Here’s a simplified step-by-step explanation of how HIV infects
immune cells: The first step in the infection process involves the attachment of HIV to
immune cells. The virus carries a glycoprotein on its surface called gp120, which binds
to the CD4 receptor on the surface of CD4+ T cells, macrophages, and dendritic cells.
This interaction is the initial binding event between the virus and the host cell. After

243

binding to CD4, HIV also requires a co-receptor to gain entry into the host cell. Two
common co-receptors used by the virus are CCR5 and CXCR4. Depending on the viral
strain, it can use one or both of these co-receptors. This interaction between gp120 and
the co-receptor triggers a conformational change in the virus, allowing it to fuse with
the host cell membrane. The conformational change in the virus membrane allows it
to fuse with the host cell membrane. This fusion event enables the virus to release
its genetic material into the interior of the host cell. Once inside the host cell, HIV
carries an enzyme called reverse transcriptase, which converts its single-stranded RNA
genome into double-stranded DNA. This process is known as reverse transcription.

The newly formed viral DNA is transported into the cell’s nucleus, where it is inte-
grated into the host cell’s DNA. The enzyme integrase plays a critical role in this step.
Once integrated, the viral DNA becomes a permanent part of the host cell’s genetic ma-
terial. The integrated viral DNA is transcribed into messenger RNA (mRNA), which is
then translated by the host cell’s machinery to produce viral proteins and RNA. This
leads to the assembly of new viral particles. New viral particles are assembled in the
host cell and are released from the cell’s surface in a process known as budding. The
new virus particles can go on to infect other immune cells and continue the cycle of in-
fection. As HIV continues to infect and replicate within CD4+ T cells, macrophages, and
dendritic cells, the immune system’s response is compromised. Over time, the gradual
loss of CD4+ T cells, which are crucial for coordinating the immune response, weakens
the immune system’s ability to defend the body against various infections. This pro-
gressive immune system decline eventually leads to the clinical symptoms associated
with AIDS (Acquired Immunodeficiency Syndrome).

Can specific gene variants provide resistance to HIV?

The CCR5 gene and its protective variant, CCR5-delta32, thus play a pivotal role in the
complex interplay between human genetics and HIV. The CCR5 gene, specifically its
CCR5-delta32 mutation, has garnered significant attention in the field of HIV research
due to its remarkable ability to confer a degree of natural resistance against the virus.
The CCR5 gene, short for “C-C chemokine receptor type 5,” encodes a protein receptor
found on the surface of certain immune cells, including T-cells and macrophages. This
receptor acts as a gateway for HIV to enter these cells, a critical step in the virus’s in-
fection cycle. However, a naturally occurring genetic variant of CCR5 known as CCR5-
delta32 possesses a mutation that renders the receptor non-functional. Individuals who
inherit two copies of this mutation are notably resistant to HIV infection, as the virus
struggles to enter and infect their immune cells. This extraordinary genetic resistance
has raised considerable interest in the scientific and medical communities, as it offers
insights into potential HIV treatment strategies and the development of innovative ther-
apies.

244

The frequency of the CCR5-delta32 variant varies significantly across different popu-
lations worldwide. It is important to note that historical factors, such as population
migrations, genetic bottlenecks, and the prevalence of diseases like HIV, can influence
the presence and distribution of this protective mutation. Here’s an overview of the
frequency of the CCR5-delta32 mutation in different regions: The CCR5-delta32 mu-
tation is most common in populations of Northern European descent, particularly in
Scandinavia. In some regions of Northern Europe, such as Sweden and Finland, the
mutation can be found in approximately 10-15% of the population. This high preva-
lence is thought to have resulted from strong selection pressures due to past epidemics,
like the bubonic plague. As you move southward in Europe, the frequency of the CCR5-
delta32 mutation decreases. In Southern European countries like Spain and Italy, the
prevalence drops to about 5% or even lower. The CCR5-delta32 mutation is relatively
rare in African, Asian, and Indigenous populations. In most cases, it occurs in less than
1% of these populations. The low frequency can be attributed to the historical lack of
selective pressure from diseases like HIV in these regions.

Aim

Your goal is to use pairwise alignment to find the position of the delta32 mutation and
establish if it is a deletion, insertion, or nucleotide substitution. This way, you, or other
researchers, will be able to learn how the mutation changes the gene’s protein-coding
sequence.

The learning goals of this exercise are:

• Acquire practical experience using online alignemnt tools.
• Understanding how parameters in the Needleman-Wunch algorithms affects the

alignment.
• Understand the different uses of DNA and protein alignment.
• Acquire practical experience using online Blast to search an NCBI sequence

database.
• Getting acquainted with different file formats for storing sequence information.

Preparation

Fasta sequence format

Files containing DNA or protein sequences are just text files formatted in a particular
way so that each sequence can be associated with additional information. The most
simple format is called FASTA format, and files with sequences in this format are called
FASTA files and are usually given either a “.fa” or “.fasta” suffix. A FASTA has two

245

elements for each sequence: a header line with a leading ” >” character followed by
one or more lines with the DNA or protein sequence (the sequence may be broken over
several lines). The content of a FASTA file with two (short) sequences in it could look
like this:

>7423344 some additional description
AGTCCCTTGCA
TTATTGCAATAT
>2342134 some additional description
GGTCCAATTGC
AAATTGGAATA

The first word after the “>” in the header line is usually a sequence identifier; the rest
is an additional description or information.

Aligning DNA sequences

For this this exercise, you will have four fasta files each with one sequence in it:

• The full mRNA of the normal CCR5 gene: CCR5_mRNA.fa
• The full mRNA of the CCR5-delta32 variant: CCR5_mRNA_delta32.fa
• The coding sequence (CDS) of CCR5: CCR5_CDS.fa
• The coding sequence (CDS) of CCR5-delta32: CCR5_CDS_delta32.fa

You can download the files on Brightspace.

Exercise 28-1

Before we head into the actual investigation, lets begin by looking at the exon/intron
structure of CCR5 by aligning the mRNAs of CCR5 to its CDS using the Needleman-
Wunsch algorithm. Go to the EBI website for pairwise alignment. Under “Sequence
type” you need to select “DNA” to enable alignment parameters suitable for DNA align-
ment. Now align the two sequences by copy/pasting the mRNA into the top input field
and the CDS into the bottom one (you must include the header line with the “>” char-
acter). Leave the rest of the options with their default values.

Guided Reflections

• What are the other default values? Click “more options” to see what they are.
• Which score matrix gap penalties are used?
• Does the program use linear or affine gap scoring?
• Are gaps at the ends of the alignment scored differently than the internal gaps?

246

https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle

Exercise 28-2

Now click “Submit”, to get your job queued on the server. Yol, and the bottom part
shows parau have to wait a bit. When the job is completed and the output is shown,
the lines beginning with “#” provide additional information about the alignment. The
top part list the options used for running the “needle” program in the terminameter
values and alignment statistics.

Guided Reflections

• What gap scoring was used?
• Which substitution matrix was used?
• Where do you find the result of the alignment?
• The alignment shows differences and similarities between the two sequences.

Which differences do you see between the mRNA and the CDS? Why is there a
difference?

Exercise 28-3

Now, on to the actual investigation. Begin by aligning the mRNAs of CCR5 and CCR5-
delta32 to each other using the Needleman-Wunsch algorithm using the default values
of parameters. Look at the alignment results.

Guided Reflections

• Describe the similarities between the two sequences. How many bases are the
same and where are they located?

• Describe the differences between the two sequences. Where are the differences
located on the mRNA and how many bases are involved? (Hint: 5’-UTR, 3’-UTR,
Coding region)

Aligning protein sequences

Exercise 28-4

Now, you will translate the coding sequence of CCR5 and CCR5-delta32 to see which
effect the mutation has on the protein level. Go to the Expasy translate website and set
the “Output format” to “verbose”. Then, translate the two coding sequences, one at a
time, by pasting the FASTA entries into the field (including the header line).

247

https://web.expasy.org/translate

Guided Reflections

• What are the likely reading frames of each sequence? (number and direction)
• Which differences do you observe based on the translated sequence?

Exercise 28-5

Now go back to the EMBOSS Needle website and align the two protein sequences. Look
at the results of the alignment.

Guided Reflections

• Where are the similarities between the two protein sequences?
• Where are the differences between the two protein sequences?
• How does the mutation affect the protein? (Hints: deletion, insertion, missense,

nonsense, frameshift)

Searching a database using Blast

Sooty mangabay (Cercocebus atys) is a species of primates. Sooty mangabays also have
common variants in their CCR5 gene that seem to protect them against SIV (simian im-
munodeficiency virus). We want to investigate how the Sooty mangabay CCR5 variants
are similar or different to the gene variants found in the human CCR5.

Exercise 28-6

You can use Blast to find and investigate these sequences too. Go to the Blast website
at NCBI. Clicking “Nucleotide BLAST” will take you to the search interface for the
versions of Blast optimized for DNA and RNA searches. Leave the settings to their
default values, but take a look around to see what options are available. “Program
Selection” lists the version of Blast. We are using megablast for this.

Guided Reflections

• Click the “?” icon to learn a bit about each one. How do you think megablast and
blastn may differ in the kmer sizes and thresholds they use?

248

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi

Exercise 28-7

Before you start the database search, you want to limit its scope to only sequences from
sooty mangabey. Set organism to sooty mangabey (“sooty mangabey (taxid:9531)”).
Once you do this, it should look like Figure 28.1. Now paste in the CCR5 CDS and click
the blue “BLAST” button at the bottom of the page to queue your search request (you
may have to wait a bit).

Figure 28.1: BLAST search interface

Once the search results appear, they are sorted by E-value. The light blue header row
lets you sort them by other criteria. “Query cover” sorts the database hits by how much
of your search sequence (query) they cover.

Guided Reflections

• What does the E-value mean?
• What types of sequences does the BLAST search return?

Exercise 28-8

Since you are looking for search hits to a CDS in the other species, look for “C-C motif
chemokine receptor 5 (CCR5), complete CDS” in the descriptions of search hits and
pick the one with the highest percent identity. Clicking the corresponding link in the
description column takes you to a local alignment of the part of your query sequence
that aligns with the database sequence. In this case, it covers your entire CCR5 CDS.

249

Guided Reflections

• Describe the differences shown by the alignment. How many bases are different?
How many gaps are there?

GenBank sequence format

Exercise 28-9

Now go back to the list of search hits by clicking the “Descriptions” link in the light blue
bar above the alignment you were just looking at. See if you can find any search hits
with names including “delta”. There should be a delta delta-24 allele among them. Pick
the one with sequence ID AF079473.1. Inspect the alignment to the human CCR5.

Guided Reflections

• What characterizes these variants? What does the “delta” in the variant name
refer to?

• Given what you now know about the human and mangabey CCR5 genes, do
you expect that the delta32 mutation to have arisen before or after the common
ancestor of humans and mangabeys?

Exercise 28-10

Go back to the descriptions list by clicking the “Descriptions” link in the light blue
bar. On the left are tick boxes for each search hit. Mark only the two you have been
looking at (IDs AF051905.1 and AF079473.1). In the “Download” dropdown list pick
“GenBank” to download the two sequences in GenBank format. GenBank is a sequence
entry format like Fasta, including much more information about each sequence. Open
the downloaded file in VScode and see what it looks like.

Guided Reflections

• When were the sequences determined/published?
• What sequencing method was used?
• For each sequence, note another piece of information provided in the GenBank

entry format.

250

Exercise 28-11

In the GenBank file, you can find the translated sequences of each CDS. Make a new
text file in VScode and paste the two translated sequences in to create a Fasta file like
this:

>normal
MDYQVSSPTYDIDYYTSEPCQKINVKQIAARLLPPLYSLVFIFG
rest of the sequence

>delta24
MDYQVSSPTYDIDYYTSEPCQKINVKQIAARLLPPLYSLVFIFG
rest of the sequence

Now, head back to the EBI needle website and align the two protein sequences. Make
sure it is set to protein this time.

Guided Reflections

• Where is the deletion located?
• Does it just delete amino acids, and if so, how many, or does it change the reading

frame or induce stop codons?
• How does the mangabey CCR5 mutation compare to that in humans?

Putting it all together

Exercise 28-12

Have a look at this scientific paper: “A Novel CCR5 Mutation Common in Sooty
Mangabeys Reveals SIVsmm Infection of CCR5-Null Natural Hosts and Efficient
Alternative Coreceptor Use In Vivo” and look at Figure 1 and its figure legend.

Guided Reflections

• Figure 1A shows the alignment of 6 different gene variants. What species are they
from and what variants are shown?

• Figure 1B shows the alignment of the predicted protein sequence. What do the
grey boxes mean? What do the arrows mean? What does the highlighted se-
quence mean?

251

https://doi.org/10.1371/journal.ppat.1001064
https://doi.org/10.1371/journal.ppat.1001064
https://doi.org/10.1371/journal.ppat.1001064

• We have now looked at the sequences of different mutations. Suggest an exper-
imental method/setup, that might show something about the functional impor-
tance of the mutations.

Project files

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

252

https://munch-group.org/bioinformatics/supplementary/project_files

29 MRSA

Methicillin-resistant Staphylococcus aureus (MRSA) is a strain of the staph bacteria
that’s become resistant to the antibiotics typically used to treat ordinary staph infec-
tions. Originally, the Staphylococcus aureus bacterium was a common cause of skin in-
fections, pneumonia, and other medical conditions. However, its methicillin-resistant
counterpart, MRSA, emerged as a strain that resists many of the conventional antibi-
otics. This resistance is not limited to just methicillin but extends to other antibiotics,
often rendering standard treatments ineffective.

Individuals infected with MRSA can experience a range of ailments, from skin and
wound infections to more severe conditions like pneumonia, bloodstream infections,
and sepsis. Particularly concerning is its ability to cause life-threatening complications
in older or immunocompromised people or people with chronic illnesses.

A critical factor that has amplified MRSA’s resilience and adaptability is the phe-
nomenon of horizontal gene transfer (HGT). Unlike the usual vertical transfer of
genes from parent to offspring, HGT facilitates the direct exchange of genetic material
between different bacterial species. This form of gene transfer has been pivotal
in the rapid acquisition and spread of antibiotic resistance genes within microbial
communities, including those of Staphylococcus aureus.

The most common mechanism of HGT involves direct cell-to-cell contact, where a
donor bacterium transfers genetic material, like the SCCmec carrying the mecA gene,
to a recipient bacterium. Less commonly, viruses that infect bacteria, known as bac-
teriophages, can mistakenly package bacterial DNA, including resistance genes, and
transfer them to another bacterium upon subsequent infection.

MRSA’s resilience stems from various genetic mutations but is prominently due to the
acquisition of the mecA gene. This gene provides the bacteria with the ability to pro-
duce a unique protein that alters its cell wall, reducing the efficacy of even last-resort
antibiotics, such as methicillin. mecA is believed to have been acquired through HGT
and often locates to a mobile genetic element called the staphylococcal chromosomal
cassette (SCCmec), allowing for its potential transfer between different strains or even
species of bacteria.

Given the role of HGT in the rapid spread of resistance, it’s evident that MRSA’s evolu-
tion isn’t merely a product of its internal genetic changes. It’s deeply intertwined with

253

a broader microbial ecosystem, where genes, particularly those conferring survival ad-
vantages like antibiotic resistance, can be exchanged, adopted, and propagated. This
understanding underscores the challenge that antibiotic resistance presents.

Figure 29.1: MRSA cases per year in Denmark. SSI hypothesises that COVID restric-
tions and effects is the main cause of the reduction in cases in later years

Iinvestigating the origins of the mecA gene in MRSA providesinsights into the potential
sources and the evolutionary trajectory of antibiotic resistance. Your goal is to identify
which organism(s) Staphylococcus aureus might have acquired the mecA gene, and
what evidence supports this potential horizontal gene transfer event?

The structural learning goals of this exercise are:

• Learn how to retrieve sequences for analysis
• Build practical experience using Blast
• Acquire practical experience with multiple alignment tools.

Sequence Retrieval

Exercise 29-1

Obtain the genetic sequence for the mecA gene from MRSA. Go to Genbank and find a
complete sequence for mecA in Staphylococcus aureus. That is, do a nucleotide search
for “Staphylococcus aureus mecA” and select a MecA gene version with “complete
cds”. See Figure 29.2. Do not pick the complete genome. Check if MRSA is mentioned
in the documentation for the result.

254

https://www.ncbi.nlm.nih.gov/genbank

Exercise 29-2

Find the FASTA version of the genomic reference assembly. This will give you the ge-
netic sequence of the gene. Keep the header of the sequence (“>. . . Staph. . . , complete
cds”), as we will need this later.

Exericse 29-3

Find the FASTA version of the protein sequence. There might be a link to this in “Re-
lated Information.”

Database Searching using BLAST

Exercise 29-4

Go to the NCBI BLAST web portal. Use the mecA nucleotide sequence to search for
similar sequences in the nucleotide database. Which organisms have regions with high
similarity to the mecA gene nucleotide sequence in your query? Tip: Check the “Show
results in a new window” to allow searching multiple times and compare results. Fur-
ther, know that it is normal for blasting to take a few minutes. Examine the following
metrics (columns):

• E-value (Expect value): The number of hits one can “expect” to see by chance
when searching a database of a particular size. Lower E-values indicate a more
significant match. Typically, E-values below 0.05 or especially 0.01 suggest a sig-
nificant match, but the threshold can depend on the content and especially the
size of the search. The longer a search term, the less likely it is for random
matches.

• Percent Identity: The percentage of identical matches between the query and
subject sequences over the aligned region.

Exercise 29-5

Try adjusting the number of maximum target sequences in “Algorithm Parameters”
(e.g., to 1000). You can also exclude “Staphylococcus aureus” from the search results to
only see other organisms.

• How did this affect the results?
• Check the taxonomy of your found organisms.
• Check the graphic summary of the results.

255

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Figure 29.2: Screenshot

256

Exercise 29-6

Try the other programs (“Program Selection”). They may be slower but can find less
similar matches that may uncover the potential sources of the gene.

• Did this affect the results? If so, how? (Use the taxonomy and graphic summary
in your analysis.)

• What are the main differences between the programs (megablast, discontiguous
megablast, and blastn).

• What do we expect from the different algorithms? It is okay to use Wikipedia or
similar resources.

Exercise 29-7

Try the protein blast algorithms and compare the findings. This requires the protein se-
quence. Do you find the MecA gene product (i.e., protein) in other types of bacteria (i.e.,
not Staphylococcus strains)? If so, what may this imply about horizontal gene transfer
of this gene? Is there a risk of MRSA “helping” completely different, and perhaps more
dangerous, bacteria genera become antibiotics resistant?

Exercise 29-8

You might see multiple Staphylococcus strains when allowing higher maximum target
sequences. What are the potential interpretations of this concerning horizontal gene
transfer? Can we deduce a single origin of the gene in Staphylococcus aureus from
these results? Remember that we see a snapshot of where the genes were present during
various studies – this is ever-changing.

Exericse 29-9

According to Bloemendaal et al. (2010): “Methicillin Resistance Transfer from Staphylo-
coccus epidermidis to Methicillin-Susceptible Staphylococcus aureus in a Patient dur-
ing Antibiotic Therapy”, mecA may be transferred from Staphylococcus epidermidis.
The mecA gene is located on the Staphylococcal Cassette Chromosome mec (SCCmec),
and they found that the SCCmec were almost identical in MRSA and in S. epidermidis
in a patient.

• Does your results imply this may be true?
• If this was the case in that one patient, does it mean the MecA gene in MRSA

always stems from S. epidermidis?

257

Multiple Sequence Alignment using ClustalW

Exercise 29-10

Choose five or more types of bacteria from your BLAST results, such as Staphylococcus
epidermidis (include Staphylococcus aureus). You will be comparing the MecA gene’s
sequence in each of these to find relations between them.

Exercise 29-11

Go to Genbank and find nucleotide sequences for the MecA gene in each of your se-
lected organisms. E.g., search for “Staphylococcus epidermidis MecA”. You should get
the (when possible) complete sequence for the gene only. Get the header of the FASTA
file as well.

Exericise 29-12

Go to ClustalW at https://www.genome.jp/tools-bin/clustalw and input the se-
quences (with header first) of the mecA sequences from MRSA and the selected
organisms. See Figure 29.3 Select DNA as you’re inputting nucleotide sequences. Feel
free to try the protein sequences.

Run the multiple alignments. - What does the output tell us? - How may these align-
ments be useful to us in determining the origin of the MecA gene?

Exercise 29-13

At the top of the output page, select a method in the tree menu (e.g., FastTree) and press
Exec. This will generate a phylogram. A phylogram is a depiction of evolutionary rela-
tionships between taxa, in this case, the mecA gene from different types of bacteria. The
branch lengths illustrate evolutionary distance and nodes from where the tree branches
can be interpreted as common ancestors when we are working with vertical gene trans-
fer. Try to imagine what the nodes could be interpreted as when we are talking about
horizontal gene transfer. Hint: maybe the nodes could be interpreted as possible hori-
zontal gene transfer events.

• What does the generated phylogram tell you?
• How could we use phylograms to track the potential horizontal gene transfer

between the different bacteria?

258

Figure 29.3: Screenshot

Discussion

Based on the BLAST and ClustalW results, which organisms might have been the po-
tential source(s) for the mecA gene in MRSA?

• Discuss evidence of potential horizontal gene transfer events based on sequence
similarity.

• Reason about the roles of the various HGT approaches in MRSA (i.e., Conjuga-
tion, Transduction, Transformation). What types are most likely between staph
bacteria?

• Discuss the significance of horizontal gene transfer in the rapid emergence of an-
tibiotic resistance.

• What are some ways we can use sequence alignments of MRSA to combat them?
E.g., treatment, outbreak management (like tracking sources, spread, and evolu-
tion), and new drugs such as protein-targeting vaccines.

•

259

Additional tools

DTU (Technical University of Denmark) has developed a set of tools highly relevant to
antibiotic resistance and MRSE specifically. These are not part of the assignment, but
check them out if you are curious:

• Identification of acquired antibiotic resistance genes
• SCCmecFinder identifies SCCmec elements in sequenced S. aureus isolate
• Identification of acquired virulence genes
• spaTyper predicts the S. aureus spa type

260

http://genepi.food.dtu.dk/resfinder
https://cge.food.dtu.dk/services/SCCmecFinder/
https://cge.food.dtu.dk/services/VirulenceFinder
https://cge.food.dtu.dk/services/spaTyper

30 Aardvark?

“What is an Aardvark?” You may have bugged you for a while. It might have kept you
up at night. You might have been twisting and turning due to the mystery that is the
Aardvark. But fear not. Today, you will attempt to answer this exact question. Or at
least a part of the question from a phylogenetic perspective. In the process, hopefully,
you will learn something about phylogeny. Let’s start with a more straightforward
question. “What does the Aardvark look like?”, Figure 30.1.

Figure 30.1: This is an Ardvaark

The Aardvark is a nocturnal mammal found in Africa, with the size of a big rottweiler.
The long ears and face shape (not considering the nose) make you wonder if it is the
long-lost cousin of the kangaroo. It mainly feeds on ants and termites, which might
change your mind in regards to its heritage. It could be a type of anteater. Looking at
the nose and considering that in Afrikaans, ‘erdvark’ means ‘earth pig’ or ‘ground pig,’
you might change your mind once again and consider it a type of pig. The Aardvark is
truly a mystery. So, let’s solve the mystery of the Aardvark’s evolutionary relation to
these reference animals! Feel free to look up cute pictures of these animals while you
work on the exercises. I have collected a list of animals that I think of when I look at the
Aardvark. Have the animals in Figure 30.2 in mind when you do the exercises.

261

Figure 30.2: A: Aardvark, B: Grey Kangaroo, C: Golden Mole, D: Elephant Shrew, E:
Red River Hog, F: Collared anteater, G: African Elephant

To uncover the mystery of the Aardvark and its relation to the reference animals, we
will be looking at the evolutionary distance between the animals listed above and the
Aardvark. To do so, we need to align sequences from each of the animals. Not any gene
will do. We need a highly conserved gene found in all animals, that can represent to
long evolutionary distances in question.

I suggest the COI (cytochrome c oxidase I) gene (also known as the COX1 gene). The
COI gene is one of the most popular phylogenetic markers for evaluating evolutionary
relationships. It is found in nearly all aerobic eukaryotes, where it encodes Cytochrome
C Oxidase subunit 1, a protein involved in mitochondrial respiration.

COI is a part of the mitochondrial DNA, which has the added benefit that the gene is
inherited from the mother and that it does not undergo recombination. Recombination
would make different parts of the aligned sequences follow seperate paths through the
generations. Each segment of the alignment would then have its own tree, and we
would end up modeling an avarage of many trees with a model that assumes a single
tree for the entire sequence. This is obviously not good, but think about how it might
bias the resulting phylogeny.

We are not the first to think this specific gene would be neat to use for phylogeny. COI
has been used for DNA barcoding, which is a method for identifying and classifying
species based on their genetics. This also means that this gene has been sequenced for

262

a lot of species, making our job more manageable. It means that we do not need to fly
off to some jungle, catch animals, extract DNA, create primers for the COI gene, and
sequence each one. We simply look them up in the online database.

“

”

Before you go on, sit back and appreciate amazing all this is. Not only
is this magnificent beast encoded by strings of only four different nucleic
acids that we are able to extract becuse they are carried by all its cells.
We can also identify the sequence of these nucleic acids and we can use
models their evolution to place the Ardvark in the tree of life among the
other species.

Build a FASTA file

To investigate the mystery of the Aardvark, you need to collect the sequences of the
COI genes of all the reference animals in a way that makes it possible to compare all the
gene sequences. A common way to do so is to use FASTA files. FASTA is a file format
used for sequences of nucleotides or amino acids that is used by almost all bioinfor-
matic software tools. A FASTA file can contain multiple sequences as long as they are
formatted as follows: First, a line starting with “>” followed by an ID and a description
of the sequence. This is known as the “header” and is one line only The following lines
are the sequence. This can take up as many lines as needed. The sequence is usually
split across lines with 60-80 characters on each line. The example below has 70 charac-
ters per line. To start a new sequence in the file, simply add a new header, followed by
a sequence. Like this:

> ID1 some kind of description
ATGTCTTCTATTAACAGCTCTGAATCGCTTGCTGCTTCGGGAGGAAAGCCTTCTGTTTCCCACGAGTCCT
TGCCCTATAAAACTGTCACCTACTCCGGAGAAGGCAATGAGTATGTAATTATTGACAACAAAAAATACTT
GAGGCACGAGTTGATGGCTGCCTTCGGTGGTACCTTCAATCCTGGTTTGGCACC
> ID2 some other kind of description
ATGTCTTCTATTAACAGCTCTGAATCGCTTGCTGCTTCGGGAGGAAAGCCTTCTGTTTCCCACGAGTCCT
TGCCCTATAAAACTGTCACCTACTCCGGAGAAGGCAATGAGTATGTAATTATTGACAACAAAAAATACTT
GAGGCACGAGTTGATGGCTGCCTTCGGTGGTACCTTCAATCCTGGTTTGGCACCCTTTCCTAAGCATCAG
TTTGGTAACGCTTCTGCCCTAGGTATAGCAGCATTCGCCTTACCGCTTTTAGTGTTGGGCTTGTATAATT
TGCAAGCCAAAGACATTACAATTCCAAATATGATTGTTGGTTTATGTTTCTTCTACGGTGGTCTTTGTCA
ATTCTTATCTGGACTCTGGGAAATGGTCATGGGAAACACCTTTGCTGCCACTTCCT

Exercise 30-1

Now it is your turn! Make a FASTA file containing the nucleotide sequence of the COI
(COX1) gene of all the reference animals and the Aardvark. Use the file “animals.fasta”

263

to insert the nucleotide sequences. You can find the nucleotide sequences in the NCBI
Nucleotide database. To search for genes, select “Gene” instead of nucleotide from the
drop-down menu. If you where looking for the PRDM9 gene in humans you would,
you search like this:

PRDM9[Gene Name] AND Homo sapiens[Orgn]

The [Gene Name] and [Orgn] tags tells the database that “PRDM9” should be interpreted
as a gene name, and “Homo sapiens” as an organism. This greatly limits your search
and excludes database entries where the same words appear in other contexts. Have a
quick look at the complete list of search terms available.

You are looking for COX1 and Orycteropus afer is the Latin name for Aardvark. This
guides you to the page containing the database information for the COI gene for the
specific organism (animal). You can find the gene sequence in a fasta format in the
section “NCBI Reference Sequences (RefSeq).” Copy the gene sequence and paste it
into the animals.fasta file under the appropriate header. To help you along, here are the
Latin names of the animals:

Species Latin name

Aardvark Orycteropus afer
Grey Kangaroo Macropus giganteus
Golden Mole Eremitalpa granti
Elephant Shrew Macroscelides flavicaudatus
Red River Hog Potamochoerus porcus
Collared anteater Tamandua tetradactyla
African Elephant Loxodonta africana

We would like to find an animal that can serve as “outgroup” in our analysis. An
outgroup is a sequence so distantly related animal to all your other sequences (your
“ingroup”) that you can safely assume that all your ingroup sequences find a common
ancestor before before they find one with the outgroup sequence (Figure 30.3). The
point where the outgroup attaches to the ingroup tree must then be the common an-
cestor of your ingroup sequences. Since all your subject animals are all live-bearing
mammals, you can use the platypus (a monotreme)(Ornithorhynchus anatinus) as the
outgroup and add it to your fasta-file.

One-click analysis

Now that you have created a FASTA file with the COI (COX1) gene of the Aardvark
and all the reference animals, it is time to look into the evolutionary distances between

264

https://www.ncbi.nlm.nih.gov/nucleotide
https://www.ncbi.nlm.nih.gov/nucleotide
https://www.ncbi.nlm.nih.gov/books/NBK49540/

Figure 30.3: Ingroup and outgroup in a phylogeny

them. We will be using the web tool www.phylogeny.fr for this exercise. When you
do your phylogenetic analyses below, you need to screengrab/save your phylogenetic
trees along the way. You should paste them into a document with notes on which
models and parameters used for each tree. That way you can compare them all at the
end.

Exercise 30-2

Go to www.phylogeny.fr and get aquianted with the web interface. Then navigate to
the “one-click” analysis under the “phylogeny analysis” tab. The “one-click” analysis
runs an easy initial analysis of your sequences, automating the four steps below with
default models and parameters:

1. Multiple sequences alignment of all the genes in your newly made FASTA file.
2. Curation of the aligned sequences in order to eliminate poorly aligned positions

(such as trailing nucleotides in cases where one sequence is much longer than the
others).

3. Building of the phylogenetic tree according to evolutionary distances calculated
from the curated multiple sequence alignment.

4. Visualization of the tree.

Exercise 30-3

Now that you have navigated to the “one-click” analysis page, you can upload the
FASTA file you created in the previous task. Then click submit. The result is a phylo-
genetic tree describing the evolutionary distances between COI genes of the different
animals. Take a good look at it. Does it look anything like what you expected?

265

https://www.phylogeny.fr
https://www.phylogeny.fr

Exercise 30-4

If you want to make the tree easier to interpret or to highlight specific relations, you can
change the visualization without changing the information in the tree. One way is to
reroot the tree. Let’s try it out. First, click on the “Reroot (outgroup)” button below the
tree under the section “Select an action and click leaf or internal branch.” Then click on
the name “Platypus” and wait for the tree to re-render. Now, look at it again. You can
also manipulate the visualization of the tree by, instead of clicking “reroot,” you can
click on “Flip” or “Swap.”

1. What does Flip do?
2. What does Swap do?
3. What does Reroot do?

Exercise 30-5

You have played around with the tree a bit, and now you are ready address what it tells
you. Start by clicking on “Reset (cancel all changes)” in the section “Select an action”
and follow up by rerooting the tree with Platypus as the outgroup. Now answer the
following questions:

1. How much does re-rooting change the tree?
2. How many terminal nodes (leaves) and how many internal nodes are there in the

tree?
3. Which node represents the most recent common ancestor between the Aardvark

and the African Elephant? Which one is the common ancestor between the Aard-
vark and the Elephant Shrew? Does this hold no matter whether you forced the
platypus as the outgroup?

4. Which of the reference animals are closest related to the Aardvark according to
this model? Does the tree look like you expected?

Different models of DNA evolution 30-6

Exercise 30-7

The “one-click” analysis uses the HKY85 substitution model to calculate the phyloge-
netic distances, but you can choose other models as well. Here is a rundown of the
most important ones:

The Jukes-Cantor model is one of the simplest nucleotide substitution models. It as-
sumes that all types of nucleotide substitutions (transitions and transversions) occur at
an equal rate, meaning that there’s a single rate parameter for all types of substitutions.

266

This is a highly simplified model and is often used as a baseline for comparison with
more complex models.

The Kimura two-parameter model is a simple model that takes into account two types
of substitutions: transitions (purine-to-purine or pyrimidine-to-pyrimidine changes)
and transversions (purine-to-pyrimidine or vice versa). It assumes that transitions oc-
cur at a different rate () than transversions (), reflecting the fact that transitions are often
more common in DNA evolution.

The HKY85 model is a relatively simple model that takes into account two major factors
in the evolution of nucleotide sequences: transitions (purine-to-purine or pyrimidine-
to-pyrimidine changes) and transversions (purine-to-pyrimidine or vice versa). It as-
sumes that transitions and transversions occur at different rates, which makes it more
biologically realistic compared to some simpler models like the Jukes-Cantor model.

The GTR model is a more complex and flexible model compared to HKY85. It allows
for different substitution rates between all possible pairs of nucleotides, making it a
highly general model. This means that it can accommodate variations in the substitu-
tion rates of all six possible types of nucleotide changes (AC, AG, AT, CG, CT, GT).

The Hamming distance is not a traditional substitution model used for phylogenetics.
It is a simple method for comparing sequences of equal length, where it counts the
number of positions at which two sequences differ (i.e., the number of substitutions
needed to convert one sequence into another). It does not consider the specific types of
substitutions (transitions or transversions).

What might be the reason for not alway choosing the model with the largest number of
parameters?

Exercise 30-8

Let’s explore how the evolutionary distances change when you use other models and
also how the different tree construction methods make a difference. You can du this by
running the steps from the “one-step” analysis, but change the model of DNA evolution
to explore how this affects your results.

You will start at step 1: Multiple sequence alignment. You need a multiple alignments
of all your sequences. Lucky for you, www.phylogeny.fr has already done that in order
to make the tree. Here, the MUSCLE program has been used (MUSCLE is conceptually
close to ClustalW). We will not change the alignment method. To access the multiple
alignments, click on the tab “3. Alignment”. To see the curated that, click on the tab
“4. Curation”. In this tab, the alignment has been curated by the program Gblocks.
Gblocks has identified the portions of the alignment suitable for distance calculation
and tree-building and has underlined these portions with a dark blue box. You can
read more about Gblocks in the Gblocks documentation. Go read the introduction in
the Gblocks documentation. What kind of positions are excluded after curation?

267

https://home.cc.umanitoba.ca/~psgendb/doc/Castresana/Gblocks_documentation.html

Download the curated alignment by clicking on “Cured alignment in Phylip format”
under the Outputs section. This gives you the equal-length aligned sequences result-
ing from curation by Gblocks in a phy-file. Go read the introduction in the Gblocks
documentation. What kind of positions are NOT included after curation?

Exercise 30-9

Now you can see what happens if we use the same alignment same curation, but differ-
ent evolutionary models to calculate the evolutionary distances. To help you calculate
the evolutionary distances, www.phylogeny.fr has some nice options for calculating
distance matrices for you. Let’s start by building phylogenetic trees using PhyML.

PhyML (Phylogenetic Maximum Likelihood) employs a statistical approach (maximum
likelihood) to estimate the most likely tree given the input alignment. To Use PhyML,
navigate to the top, tap “Online Programmes,” and choose PhyML. Here you can up-
load your curated alignment in phylip format (the one you downloaded from the cura-
tion tab).

PhyML now lets you choose a substitution model. A substitution model is a mathemat-
ical model that describes how genetic sequences change over time. So now you will
see how these different models actually affect your tree. Try the two DNA/RNA substi-
tution models for PhyML (HKY58 and GTR). Remember to save your tree by clicking
“Tree in newick format” and save the file. These tree files can be visualised by using the
program “TreeDyn” under the top tab “Online Programmes”. Do the trees formed by
GTR and HKY85 look alike? What are the Aardvark’s closest relatives according to the
two trees?

Explore phylogeny - part 3

Not only can you change the substitution model used in calculating the evolution-
ary distances. You can also use different tree-builders. You just tried PhyML, which
uses a maximum likelihood approach. Next, try to use BioNJ. BioNJ stands for “Bi-
ased Neighbor Joining,” which is an adaptation of the neighbor-joining algorithm (not
currently a part of www.phylogeny.fr). Neighbour Joining is a distance-based tree-
building method, and BioNJ uses the same approach, with a slight bias, to avoid er-
rors with particularly long branches. Try the three DNA/RNA substitution models for
BioNJ (kimura, jukes-cantor, hamming). Remember to save your trees. Do these three
trees look alike? Do they look like the trees formed by PhyML? What are the Aardvark’s
closest relatives according to the three trees?

268

Food for thought

Okay, step back from the Aardvark for a moment. What about the other animals we are
looking at? Are their relations always the same? Are some always grouped together
while others are always grouped far apart? If you are particularly curious, try to add
other types of elephants to the FASTA-file and see how other types of elephants group
when doing phylogeny.

Now, you have looked at the Aardvark and its evolutionary relations with other ani-
mals. You have tried many different ways. Are you more confident in your knowledge
about the Aardvark, or are you feeling more confused than ever? What of the animals
in your analysis is the closest relative of the Aardvark? Does Wikipedia agree with
you? (https://en.wikipedia.org/wiki/Aardvark) (Read from the Introduction, Name,
and Taxonomy). Do you trust Wikipedia? See if you can find the Aardvark (Orycteropus
afer) in NCBI’s Taxnomy Browser. What does that report its taxonomy?

Project files

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

269

https://munch-group.org/bioinformatics/supplementary/project_files

31 Plasmid ORFs

Gene prediction in bacteria is a crucial step in understanding the genetic makeup of
these microorganisms. It involves identifying the locations and boundaries of genes
within bacterial genomes, essential for studying bacterial physiology and pathogenic-
ity and developing targeted therapies. The main component of bacterial genes is the
open reading frame (ORFs), which translates into protein. So, identifying ORFs is the
main task in “de novo” prediction of bacterial genes. The most commonly used start
codon is ATG, and less frequently, GTG and TTG. Stop codons are either one of TAA,
TAG, or TGA. Although the three “reading frames” on each strand allow ORFs to over-
lap, this is mainly a feature of highly compacted viral genomes and not often observed
in bacteria. Promoter and terminator DNA motifs provide additional information usu-
ally built into hidden Markov models or neural networks. Such models also asses the
coding potential, codon usage, and length of ORFs to distinguish randomly occurring
pairs of start and stop codons from those representing genes.

A bacterial plasmid is a circular, double-stranded DNA molecule separate from the
genome found in the cytoplasm of bacteria. It is relatively small, ranging from a few
kilobases to several hundred kilobases in size, and replicates autonomously, passing
to daughter cells at cell division. Although they are usually not essential to the bac-
terium’s survival, plasmids often carry genes that can confer selective advantages to
the bacteria under certain conditions. Such conditions include exposure to antibacte-
rial agents like the antibiotics used to combat infections, and some plasmids carry genes
making the bacterium resistant to such drugs.

In this exercise, the bacterial DNA you will investigate is a plasmid extracted from an
Enterococcus faecium strain to test if it is responsible for its documented resistance to
vancomycin. Vancomycin is used to treat infections of bacteria strains resistant to other
antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one such strain. Be-
cause vancomycin is considered a “last resort” antibiotic, resistance to this drug is dan-
gerous, and it must monitored carefully.

You will use the NCBI’s ORF Finder tool to identify ORFs in the plasmid, and then use
various online tools to narrow down the ORFs to a set of likely resistance genes. You
can download a fasta file with the plasmid sequence from Brightspace.

When you open up ORF Finder, start by pasting the fasta file into the “Query Sequence”
field. Look at the search parameters, but do not change them yet. One parameter
controls the minimum ORF length. We can change the expected genetic code, specify
alternate start codons, and choose to ignore nested ORFs.

271

https://www.ncbi.nlm.nih.gov/orffinder/

Exercise 31-1

Run ORF Finder with the default parameters.

• How many ORFs did you find?
• What is the longest and shortest ORF in nucleotides (nt)? You can click on “length”

to sort them.
• To the right, there is an option to alter the tracks. Try adding the “six-frame trans-

lations”, which are located under sequence. What is most common, start codons
(green) or stop codons (red)?

Exericse 31-2

You can see that a lot of the identified ORFs are tiny and that many of them overlap
other ORFs. Both are possible in bacterial plasmids but are much rarer than seen here.
Return to the start page and rerun the search, but this time with a minimal ORF size
of 300 nucleotides (100 amino acids). - How many overlapping ORFs do we find now?
Which ORFs overlap? Some may be hard to distinguish visually; you can use the table
below the tracks to see the start and stop and order them based on start/stop. - There
is often a strand bias in transcripted regions. If two genes are close to each other, they
need the same strandedness, as RNA polymerases can otherwise collide. Which strand
is most common in this plasmid? How many genes are on the majority strand?

Exercise 31-3

With this improved list of possible genes, you are now ready to investigate the putative
functions of the different ORFs. Sort the ORFs by size and Blast the longest 10. You can
also Blast all the ORFs if you want to. Smartblast is recommended if you want to do it
quickly, and it also has multiple useful features. These include showing a phylogeny of
the closest related known proteins and a list of the best significant hits. Use a table or
list, such as the one below, to keep track of your findings. Answer the three questions
below for each of the top ten ORFs.

1. Is the translated ORF related to a known protein? You can blast multiple at the
same time. Note down the best match with a descriptive name for Putative Func-
tion. Sometimes, the best match will be a “hypothetical protein” or similar, in
which case you should move on to the next one on the list.

2. What are the functions of the related proteins? Are any of them related to antibi-
otic resistance, and if so, wich antibiotics?

3. The names of the gene homologs you find may themselves suggest resistance
function. Go to the NCBI Gene database and search for the gene name to deter-
mine if you can find it in a resistance database, such as NDARO. If so, note it as a
resistance gene.

272

https://www.ncbi.nlm.nih.gov/gene

ORF_Label Length Putative Function Resistance?

ORF18 337 ISL3 family transposase (no strong match) No

Exercise 31-4

Go back to the overlapping ORFs. Do both of the overlapping ORFs contain good
hits?

Exercise 31-5

Conclude on your findings. Does the plasmid contain genes that confer antibiotic resis-
tance? If so, what kinds of antibiotics does it provide resistance to?

Project files

Download the files you need for this project:

https://munch-group.org/bioinformatics/supplementary/project_files

273

https://munch-group.org/bioinformatics/supplementary/project_files

32 Read mapping

Next-generation sequencing (NGS) has become extremely popular among geneticists
and bioinformaticians in recent decades. Three of the biggest sequencing companies are
Illumina, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT). The
three companies use different technologies to sequence DNA, and they each have pros
and cons. Illumina reads are relatively short (150 bp) but are also the cheapest solution.
PacBio produces long, accurate reads (~15 kb) but is more than twice as expensive as
Illumina. ONT can produce extremely long reads (60 kb) but suffers from low-quality
base calls.

The choice of sequencing technique is highly dependent on the specific research ques-
tion, so it is worth understanding the capabilities of the methods before choosing how
the DNA should be sequenced.

32.1HIFI reads

In this exercise, you will work with PacBio HiFi reads. Currently, this sequencing tech-
nique is the most accurate of the NGS technologies. The sequencing method is shown
in the below figure. The biggest strength of this sequencing technique is that the reads
are read multiple times. Every time the read is read, a subread is produced, and the
final HiFi read is the consensus of all the subreads. This approach eliminates most of
the sequencing errors found in the subreads.

275

Figure 32.1: HIFI reads. l’ 2023 PacBio

In this exercise, you will work on a 3.5 Mb contig from an unknown chromosome and
tissue. The reads are PacBio HiFi reads, and in this sample, the average read length is
approximately 10 kb. We can use the IGV (Integrative Genomics Viewer) program to
visualize bam files containing the reads.

Exercise 32-1

Go to the IGV download page and download the program that fits your computer. You
should also download the four files found on Brightspace. Once downloaded, you are
ready to load the read data in IGV. In the top panel, click Genomes > Load Genome from
file and then load the file called contig_1.fa. Now you should be able to see that the
contig is 3534 kb. Next, click on File > Load from file in the top panel and load the
file called contig_1.bam (if you get something like “index error”, ensure that all your
files are named correctly, no spaces in the file names and that they are all placed in the
same folder). You can zoom in and out in the top right corner of your screen. Zoom
in until you see a window size of 23 kb. If you want to go to a specific region, you can
change the coordinates in the white box next to the contig name. The format is like the
UCSC Genome Browse (chr:start-end). Drag the data track to see different areas on the
contig. If you encounter problems, watch this five-minute video. Play around for five
minutes to understand what you are looking at.

• What are the purple ’I’s and the black dots,
• How does the coverage vary?
• Try to zoom in as much as you can. What information appears in the lower panel?
• Click on one of the reads; what kind of information do you see? Some of the lines

are obvious, but some of them are more tricky. Find some of the tags on this page.
You should focus on MM, np, rq, clipping, and QV tags:

276

https://igv.org/doc/desktop/#DownloadPage
https://www.youtube.com/watch?v=YpNg0hNUuo8
https://pacbiofileformats.readthedocs.io/en/11.0/BAM.html

MM: This tag denotes the probability of a cytosine being methylated when a guanine
follows the cytosine. The dinucleotide CG is often referred to as a CpG site. These sites
are unique due to their elevated mutation rate, but that topic will be another time.

NP: The np tag tells you how many times a read is read in the PacBio machine. If a read
is read once or twice, it often results in low base qualities. In contrast, if the read is read
15-20 times, we are more confident that the base calls are correct.

QV: Denotes the quality of the base calling. It ranges from 1-93 on the Phred scale
(https://genome.sph.umich.edu/wiki/Phred_scale). The tag is highly correlated with
the np tag because the more a read is read, the higher the base calling quality.

RQ: This tag shows the overall quality of the entire read.

Clipping: If a proportion of the read does not fit the reference sequence, that proportion
can be masked/clipped. Because of this masking, the read will look shorter in IGV.

Exercise 32-2

Go to: ptg000001l:1003200-1007274. What is the maximum coverage in this region?
There is a read with a red arrowhead at the end of the reads. What does that mean
(Hint: Look at the tags and compare them to the rest of the reads; one of the tags is
different)? How does your conclusion relate to the length of the read that is shown?
Right-click on your screen, and you will see a lot of options. Click on Quick consensus
mode. Can you see a difference in some of the reads? You will see two red and green
lines on one of the reads. To find out what the lines represent, try to zoom in on these
positions and click on each line.

• What does the colored line represent?
• Which base is highlighted in green, and which is highlighted in red?
• As we know, there are four nucleotides. Find out which colors are related to the

last two nucleotides (You should zoom out to find these).
• Now go back to ptg000001l:1003200-1007274. You have probably figured out

that the colored lines represent a mismatch in the alignment. These mismatches
could be rare but true mutations, but they could also be sequencing errors. Use
your knowledge about the np tag and QV tag to determine whether the mis-
matches are due to sequencing errors or true mutations. (Hint: Compare the tags
with the reads that do not have mismatches)

Exercise 32-3

Now that you are an expert in IGV, we are ready for more advanced stuff. Pack your
suitcase and travel to ptg000001l:2879315-2879495. Right-click and click on Hide small
indels.

277

• How many mismatches, insertions, and deletions do you see? You should also
include the length of the indels.

• You might have noticed that some of the reads have turned white. What does the
white color mean (Hint: Look at the tags)?

Exercise 32-4

In one of the previous exercises, you found positions where only one read contained
the mismatch. This mismatch is often referred to as a singleton. Base quality (QV) is es-
sential when determining whether the mismatch is a mutation or a sequencing error. In
this exercise, you look at another measure called mapping quality (MAPQ). This quality
measure ranges from 0 to 60, telling you how unique a read is mapped. If the mapping
quality is 0, the read fits equally well in another part of the genome. In this exercise,
you will also see what highly frequent single nucleotide polymorphisms (SNPs) look
like. Lastly, you will learn to think critically about the coverage and understand how
high coverage relates to poor mapping quality.

Go to ptg000001l:3178259-3178531.

• What is the maximum coverage in this region, and how does that compare to the
values from the previous exercises?

You should be able to see four SNPs. Click on the colored bars in the coverage panel.

• What is the count for each nucleotide at the SNP position?
• What do the numbers in the parenthesis tell you?
• Try to click on five different reads. What is the MAPQ for each of these reads

(write them down)?
• Compare the five values with the MAPQ of five reads found in the previous re-

gion (ptg000001l:2879315:2879495). Are they different? Which region do you
trust more?

Exercise 32-5

Place your cursor on “Color alignments by,” and choose “base modification (5mc)”.
What do you see?

Zoom in on one of the blue/red boxes and click some. What do they show you? (Hint:
Look at the sequence. Which two bases do you see for all the blue/red colors?)

Go to ptg000001l:910,755-912,644. You might have noticed that the blue/red color
represents the probability of the C being methylated. In this region, you can see that the
blue color dominates and that the concentration of CpG sites is high. To see this more
clearly, zoom out by clicking the minus button five times. The region looks unique, so
let’s investigate it a bit more.

278

Exercise 32-6

Next to where you put your coordinates, there is a blue square with a red line on it.
Click this symbol and move your cursor to the left side of your alignment. Your cursor
should look like a “plus” sign. Click on the alignment, then move the cursor to the right
side of the screen and click again. The region should now be highlighted by a red line,
like in the figure. Click the red line, and click “Copy sequence”. Go to the Bast home
page, paste the sequence, and press ‘BLAST’.

• Which chromosome is the sequence from?
• The sequence aligns 100 % with a gene called KDM5D. Try to explain why it is

likely that the blue cluster in IGV represents a gene.

Figure 32.2: IGV screenshot

Exercise 32-7

Go to ‘ptg000001l:1,855,223-1,901,969“. You should see a region with a high number of
CpGs, but the base modification differs between the reads. Discuss what causes this
pattern.

Exercise 32-8

It is time for the grand finale. Go to the end destination, which is found at
ptg000001l:243,727-244,325.

• Do you think the region contains a gene? Explain why/why not
• Highlight the region, and BLAST the sequence.
• Which tissue do you think the DNA comes from?
• If you have time, discover more interesting patterns in the data set.

279

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome

Project files

Download the files you need for this project:

contig_1.bam

contig_1.bam.bai

contig_1.fa

contig_1.fa.fai

280

https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvY29udGlnXzEuYmFt/contig_1.bam?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvY29udGlnXzEuYmFtLmJhaQ/contig_1.bam.bai?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvY29udGlnXzEuZmE/contig_1.fa?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvY29udGlnXzEuZmEuZmFp/contig_1.fa.fai?ou=145685

33 Neural networks

Machine learning comes in many forms. Whether you want to call them artificial in-
telligence or just models is a matter of taste. Hidden Markov models are one class of
models, and neural networks are another.

At this point, you already know the basics of neural networks, especially feed-forward
networks, and how we can train such a network of sigmoid neurons to work as a clas-
sifier. In this exercise, you will play with neural networks and explore how features
of input data and hidden layers affect the properties and the neural network’s perfor-
mance.

Follow the above link into the Neural Network playground. Start by reading the text
below the dashboard and look over the dashboard’s components. At the top, there is
a panel with dropdown menus controlling the properties of the network and selecting
the type of problem to solve. We will start with an activation type of “TanH” (similar to
sigmoid activation) and a problem type of “Classification” (already set if you have not
used the site before). You can pick the data set to work on in the “Data” column on the
left side. Select the top left one (blue dots surrounded by orange ones), and leave the
other controls as they are.

You see the network layout in the middle, with the input layer on the left and the output
layer on the right. The data is a set of colored points in a two-dimensional coordinate
system. The points are split into a training set and a test set. In each epoch of the
training, the model parameters are changed, and the resulting change in performance
is evaluated by running the model on the test data. The points included in the training
data are the ones you see on the right over the output. There is a tick box in the output
panel that lets you see the test data too. If you drag the “Data” slider “Ratio of training
to test data” to the left, you can see how the training data set shrinks as you include
more data in your test set. Leave it at 50%.

The neurons in the input layer fire if the data shows a particular feature. In the case
of feature X1, the neuron produces output when the data exhibits a gradient of orange
points on the left and blue points on the right. Other features trigger the other input
neurons, as their thumbnails show.

281

https://playground.tensorflow.org/

Exercise 33-1

Trim the network down to a single hidden layer (-1 layer) with just two neurons, and
make sure only the X1 feature is selected in the input layer. In the output on the right,
the color of each point shows which class it belongs to. The background color represents
the classification made by your neural network.

Press play to start the training. Pay close attention to how the weights and outputs
change from their initial states. Run the network for 100-200 epochs, then stop and
inspect it.

1. The two neurons in the hidden layer should produce output for different features
- try hovering over them and think about how the single feature creates these
activations.

2. Do the weights or the biases differ the most? You can hover over the lines/points
or look at their color.

3. What is the Test Loss noted under output?
4. Do you think adding more features, neurons, or layers will improve the classifica-

tion?

Exercise 33-2

We may need more features. Try adding the input node capturing the X2 feature and
run this model for 200 epochs.

1. Is the Test Loss better now (Test Loss is the loss function of the test data).
2. The Output prediction is quite different now; look at the neurons and consider

how adding the X2 Feature changed the other neuron outputs.
3. It seems to have quite a different fit - will adding more neurons make it even

better?

Exercise 33-3

Two neurons may not allow for enough flexibility. Add more neurons to the hidden
layer and run the model for 200 epochs.

1. How many neurons must you add to gain Test Loss under > 0.005?

282

Exercise 33-4

Now lets see how good you are:

1. Challenge: How low can you go in total Neurons and Features and still produce
a good fit (Test Loss under 0.005)? Consider which features work well with the
data especially.

2. Challenge: Try creating a model that performs poorly despite having at least three
features and four neurons (poorly being Test Loss over 0.1).

Exercise 33-5

The ring-shaped classification problem is relatively easy (for neural networks). Now, it
is time to challenge it with a more complex problem. Pick the spiral pattern (bottom
left option under Data). This pattern is much more complicated, so a Test Loss below
0.05 (rather than 0.005) is good. Using more Features and Neurons will also take longer
for each epoch, so you need to be more patient. It also requires more Epochs to train, so
wait for 500-1000 Epochs before deciding how well the network performs. While you
wait, you can watch the Test Loss graph in the output panel.

1. Try fitting a model using all features, and decide how many neurons and layers
to use. How many neurons do you need to do a good fit? Hint: You may need
more than one hidden layer.

2. Look at the neurons in the last layer - does any of the neurons reflect the spiral of
the data well?

3. Try removing some of the features the network uses the least - does it still perform
well?

4. Summarize the changes you had to make to the network to make it fit the spiral
data. Do these changes capture the non-linear pattern in the data?

Exercise 33-6

Let’s wrap up with a different kind of problem - regression. In contrast to classification,
we do not try to predict a discrete class but rather a specific numerical value. At the
top left, click on problem type and choose “Regression”. Of the datasets, pick the more
difficult dataset to the right, listed as “Multi Gaussian”. Include only the X1 and X2
features, but try different network architectures. Let the training run between 200 and
500 Epochs when testing your network.

1. Can you get the Test Loss below 0.005 with only a single hidden layer?
2. Does adding more hidden layers improve the model?
3. Which additional features enhance the model the most?

283

4. Does the addition of some features only improve models with more than one
hidden layer?

284

Part IV

Supplementary

285

Project files

287

Python projects

In each sections below, you will find download links to the files you need for each
python project.

Translating open reading frames

Primer analysis

Pairwise global alignment

Codon usage in Streptococcus bacteria

Identifying the subtype of an HIV sequence

Clustering sequences based on distance

Finding genes in bacteria

Genome assembly

Web exercises

In each sections below, you will find download links to the files you need for each web
exercise.

GWAS

None

289

CCR5

MRSA

None

Aardwark

ORF finding

Long reads

contig_1.bam

contig_1.bam.bai

contig_1.fa

contig_1.fa.fai

Neural networks

None

290

https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvY29udGlnXzEuYmFt/contig_1.bam?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvY29udGlnXzEuYmFtLmJhaQ/contig_1.bam.bai?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvY29udGlnXzEuZmE/contig_1.fa?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvY29udGlnXzEuZmEuZmFp/contig_1.fa.fai?ou=145685

Lecture recordings

Week 1

Monday

Unfortunately, the Monday recording failed :/

Wednesday

https://youtu.be/6Kl6b3r2uJ4

Week 2

Monday

The sound quality is terrible on this one, sorry.

https://youtu.be/s3vKQY8rntw

Wednesday

The sound quality is terrible on this one, sorry.

https://youtu.be/IkQZI5XuNVU

Week 3

Monday

https://youtu.be/injj7E0_ddI

291

https://youtu.be/6Kl6b3r2uJ4
https://youtu.be/s3vKQY8rntw
https://youtu.be/IkQZI5XuNVU
https://youtu.be/injj7E0_ddI

Wednesday

https://youtu.be/CHcq4_-isTM

Week 4

Monday

https://youtu.be/e86mF44Sgyo

Wednesday

The sound is missing from most of this one. The mic battery ran out. . .

https://youtu.be/DthrBNwxmiM

Week 5

Monday

No recording.

Wednesday

https://youtu.be/Oym9VWLi1ks

Week 6

Monday

https://youtu.be/k8EVqg2UXD8

Wednesday

https://youtu.be/GCeLRJCsDyU

292

https://youtu.be/CHcq4_-isTM
https://youtu.be/e86mF44Sgyo
https://youtu.be/DthrBNwxmiM
https://youtu.be/Oym9VWLi1ks
https://youtu.be/k8EVqg2UXD8
https://youtu.be/GCeLRJCsDyU

Week 7

Monday

https://youtu.be/cTr7DPec4D8

Wednesday

https://youtu.be/H7_UHCayxr4

Week 8

Monday

https://youtu.be/9UR9uqbMSaU

Wednesday

This lecture was canceled.

Week 9

Monday

https://youtu.be/3HCgpZHHATY

Wednesday

https://youtu.be/iQNMasqnQi8

Week 10

Monday

https://youtu.be/l4UShr240EU

293

https://youtu.be/cTr7DPec4D8
https://youtu.be/H7_UHCayxr4
https://youtu.be/9UR9uqbMSaU
https://youtu.be/3HCgpZHHATY
https://youtu.be/iQNMasqnQi8
https://youtu.be/l4UShr240EU

Wednesday

https://youtu.be/Cm-A_ybQ10g

Week 11

Monday

https://youtu.be/5XwD7EWxtVY

Wednesday

https://youtu.be/q0usuYKaaaI

Week 12

Monday

https://youtu.be/wEj7w4GNAkY

Wednesday

https://youtu.be/CHHPOKgdZ8k

Week 13

Monday

https://youtu.be/HpMw-CS2g88

294

https://youtu.be/Cm-A_ybQ10g
https://youtu.be/5XwD7EWxtVY
https://youtu.be/q0usuYKaaaI
https://youtu.be/wEj7w4GNAkY
https://youtu.be/CHHPOKgdZ8k
https://youtu.be/HpMw-CS2g88

Lecture slides

• Week 1

– Monday
– Wednesday

• Week 2

– Monday
– Wednesday

• Week 3

– Monday
– Wednesday

• Week 4

– Monday
– Wednesday

• Week 5

– Monday
– Wednesday

• Week 6

– Monday
– Wednesday

• Week 7

– Monday
– Wednesday

• Week 8

– Monday
– The Wednesday lecture was canceled.

• Week 9

– Monday
– Wednesday

295

https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxX01vbmRheS5wZGY/BP2024_week1_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxX1dlZG5lc2RheS5wZGY/BP2024_week1_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsyX01vbmRheS5wZGY/BP2024_week2_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsyX1dlZG5lc2RheS5wZGY/BP2024_week2_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWszX01vbmRheS5wZGY/BP2024_week3_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWszX1dlZG5lc2RheS5wZGY/BP2024_week3_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs0X01vbmRheS5wZGY/BP2024_week4_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs0X1dlZG5lc2RheS5wZGY/BP2024_week4_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs1X01vbmRheV9wYXJ0aWFsLnBkZg/BP2024_week5_Monday_partial.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs1X1dlZG5lc2RheS5wZGY/BP2024_week5_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs2X01vbmRheS5wZGY/BP2024_week6_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlBfd2VlazZfV2VkbmVzZGF5LnBkZg/BP_week6_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs3X01vbmRheS5wZGY/BP2024_week7_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs3X1dlZG5lc2RheS5wZGY/BP2024_week7_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs4X01vbmRheS5wZGY/BP2024_week8_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs5X01vbmRheS5wZGY/BP2024_week9_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWs5X1dlZG5lc2RheS5wZGY/BP2024_week9_Wednesday.pdf?ou=145685

• Week 10

– Monday
– Wednesday

• Week 11

– Monday
– Wednesday

• Week 12

– Monday
– Wednesday

• Week 13

– Monday
– Wednesday

• Week 14

– Monday
– Wednesday

296

https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxMF9Nb25kYXkucGRm/BP2024_week10_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxMF9XZWRuZXNkYXkucGRm/BP2024_week10_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxMV9Nb25kYXkucGRm/BP2024_week11_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxMV9XZWRuZXNkYXkucGRm/BP2024_week11_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxMl9Nb25kYXkucGRm/BP2024_week12_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxMl9XZWRuZXNkYXkucGRm/BP2024_week12_Wednesday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxM19Nb25kYXkucGRm/BP2024_week13_Monday.pdf?ou=145685
https://brightspace.au.dk/d2l/common/viewFile.d2lfile/Content/L2NvbnRlbnQvZW5mb3JjZWQvMTQ1Njg1LUxSMzQ2NDkvQlAyMDI0X3dlZWsxM19XZWRuZXNkYXkucGRm/BP2024_week13_Wednesday.pdf?ou=145685

Databases and resources

1. GenBank
2. UniProt
3. PubMed
4. Ensembl
5. NCBI Gene
6. STRING
7. dbSNP
8. OMIM
9. PDB (Protein Data Bank)

10. KEGG (Kyoto Encyclopedia of Genes and Genomes)
11. Reactome
12. GO (Gene Ontology)
13. HPRD (Human Protein Reference Database)
14. COSMIC (Catalogue Of Somatic Mutations In Cancer)
15. ClinVar
16. TCGA (The Cancer Genome Atlas)
17. Pfam
18. Rfam
19. InterPro
20. GTEx (Genotype-Tissue Expression Project)
21. HGNC (HUGO Gene Nomenclature Committee)
22. FlyBase
23. WormBase
24. TAIR (The Arabidopsis Information Resource)
25. Mouse Genome Informatics (MGI)
26. RGD (Rat Genome Database)
27. PharmGKB
28. DrugBank
29. PubChem
30. dbGaP (Database of Genotypes and Phenotypes)
31. dbCAN (Carbohydrate-Active enZYmes Database)
32. CATH (Class, Architecture, Topology, Homology)
33. MEROPS (Peptidase Database)
34. BioGRID
35. IntAct
36. IUPHAR/BPS Guide to Pharmacology

297

https://www.ncbi.nlm.nih.gov/genbank/
https://www.uniprot.org/
https://pubmed.ncbi.nlm.nih.gov/
https://www.ensembl.org/
https://www.ncbi.nlm.nih.gov/gene
https://string-db.org/
https://www.ncbi.nlm.nih.gov/snp/
https://www.omim.org/
https://www.rcsb.org/
https://www.genome.jp/kegg/
https://reactome.org/
http://geneontology.org/
http://www.hprd.org/
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://pfam.xfam.org/
https://rfam.xfam.org/
https://www.ebi.ac.uk/interpro/
https://gtexportal.org/home/
https://www.genenames.org/
https://flybase.org/
https://www.wormbase.org/
https://www.arabidopsis.org/
http://www.informatics.jax.org/
https://rgd.mcw.edu/
https://www.pharmgkb.org/
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/gap
http://bcb.unl.edu/dbCAN/
http://www.cathdb.info/
https://www.ebi.ac.uk/merops/
https://thebiogrid.org/
https://www.ebi.ac.uk/intact/
https://www.guidetopharmacology.org/

37. GenAtlas
38. miRBase
39. lncRNAdb
40. DGV (Database of Genomic Variants)
41. UCSC Genome Browser
42. ExPASy (Expert Protein Analysis System)
43. Swiss-Model
44. Pfam
45. SUPERFAMILY
46. EMBL-EBI InterProScan
47. WikiPathways
48. ChEMBL
49. BioCyc
50. dbVar

Knowledege data bases

Do it yourself:

298

https://genatlas.medecine.univ-paris5.fr/
http://www.mirbase.org/
http://www.lncrnadb.org/
http://dgv.tcag.ca/
https://genome.ucsc.edu/
https://web.expasy.org/
https://swissmodel.expasy.org/
https://pfam.xfam.org/
http://supfam.cs.bris.ac.uk/
https://www.ebi.ac.uk/interpro/interproscan.html
https://www.wikipathways.org/
https://www.ebi.ac.uk/chembl/
https://biocyc.org/
https://www.ncbi.nlm.nih.gov/dbvar/

Assignments

Mandatory assignments are handed in through assignments in Brightspace

Information about assignments can be found under “Schedule” in the menu bar.

299

https://brightspace.au.dk/d2l/lms/dropbox/user/folders_list.d2l?ou=145685&isprv=0

Exam info

Download the course homepage and Python documentation

Download the HTML course website for offline viewing at the exam (unzip once
downloaded and double-click index.html).

Download the HTML Python documentation for offline viewing at the exam (unzip
once downloaded and double-click index.html).

Example of exam assignment

There is no test script for this assignment. You need a data file for this assignment,
which you can also get below. Your exam assignment will not need any data from
input files.

About the written exam

“ ”
Informationen på denne side fremgår også af eksamensopgaven.

Eksamensopgave består af to dele, som vægtes lige i bedømmelsen:

1. Et sæt programmeringsopgaver.
2. Et sæt bioinformatikopgaver.

Filer til brug ved eksamen

Udover denne PDF-fil som indeholder eksamensopgaverne, har du også downloaded
tre andre filer fra eksamenssystemet, som du skal bruge til at løse eksamensopgaven:

• progexam.py: Det er i denne fil, du skal skrive de Python funktioner, der bedes
om i eksamensopgavens programmeringsdel.

301

https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=%7BorgUnitId%7D&type=coursefile&fileId=course_page_html.zip
https://brightspace.au.dk/d2l/common/dialogs/quickLink/quickLink.d2l?ou=%7BorgUnitId%7D&type=coursefile&fileId=python-3.9.21-docs-html.zip

• test_progexam.py: Det er denne fil, du kan bruge til at teste de funktioner du
skriver i progexam.py.

• bioinfexam.py: Det er i denne fil, du skriver svarene på eksamensopgavens
bioinformatik-del.

Sådan løser du programmeringsopgaverne

Start med at åbne din terminal og naviger ind i den folder, som eksamenssystemet har
lavet på din computer. Der er muligt at folderens navn indeholder mellemrum. For at
navigere ind i en folder der indeholder et mellemrum vha. terminalen, kan man skrive
starten af folder-navnet og så trykke på Tab. Så fuldendes navnet automatisk. F.eks.:
Hvis folderen hedder “Eksamen Bioinf”, kan man skrive: “cd Eksamen og så trykke
Tab. Så fuldendes navnet og man kan trykke Enter.

Som i programmeringsprojekterne fra kurset skriver du din kode i progexam.py og
kører koden sådan her:

python progexam.py

Som i programmeringsprojekterne i kurset kan du teste din kode sådan her:

python test_progexam.py

Test scriptet er tilgængeligt som en hjælp til at teste din kode, men du har selv det fulde
ansvar for rigtigheden af din kode.

Det er tilladt at bruge løsninger af opgaver til at løse senere opgaver. Man må altså
gerne kalde tidligere definerede funktioner inde i andre funktioner, man senere bliver
bedt om at skrive.

Følgende er afgørende for at din eksamensbesvarelse kan evalueres korrekt:

1. Hver funktion skal navngives præcis som angivet i opgaven. Funktioner der ikke
er navngivet korrekt, regnes som ikke besvarede.

2. Det er ikke tilladt importere kode fra andre filer, du har skrevet eller installeret.
Det vil sige, at du ikke må bruge import statements i din fil.

3. Når du afleverer progexam.py må den kun indeholde definitioner af de funktioner,
der er beskrevet i eksamensopgaven. Al kode udenfor funktionsdefinitioner skal
slettes inden du afleverer, så sørg for at teste i god tid inden aflevering, om dine
funktioner stadig virker, når du sletter sådan ekstra kode.

Allervigtigst: Funktioner der ikke fuldstænding opfylder opgavens beskrivelse regnes
som ikke besvarede. Så sørg for at lave dine funktioner færdige, så de klarer alle tests.
Hvis ingen af dine funktioner er helt rigtigt besvaret får du ingen point.

302

Sådan løser du bioinformatikopgaverne

Bioinformatikdelen af eksamensopgaven består af et sæt af opgaver, der hver dækker
et emne. Hver opgave indeholder flere delopgaver. Der er tre typer delopgaver:

1. Udsagn der enten er sande eller falske og som skal besvares med True eller False.
2. Spørgsmål der skal besvares med et tal (int eller float).
3. Spørgsmål der skal besvares med en tekst streng (f.eks. 'Dette er mit bedste

svar')

Filen bioinfexam.py er en Python fil og indeholder en variabel for hver delopgave. For
eksempel: den variabel der hører til delopgave tre i emne syv hedder emne_7_del_3.
Hver variabel har en default værdi som enten er None eller en tom streng (' '):

emne_7_del_3 = None
emne_7_del_4 = ' '

1. Du besvarer sandt/falsk udsagn ved at udskifte None med enten True eller False.
2. Du besvarer tal-spørgsmål ved at udskifte None med et tal.
3. Du besvarer tekst-opgaver ved at fylde tekst i den tomme streng.

Det er anført i bioinfexam.py om en delopgave skal besvares med True/False, et tal,
eller tekst.

Følgende er afgørende for at din eksamensbesvarelse kan evalueres korrekt: Delopgaver
som ikke er besvaret betragtes som forkert besvarede, så du er bedst tjent med at gætte
fremfor ikke at svare.

I nogle af opgaveemnerne refererer statements til en vist illustration. Alt efter størrelsen
på din skærm kan du være nødt til at “zoome ind” på illustrationerne i det program du
bruger til at vise denne PDF, ellers kan der være detaljer du ikke kan se.

Sådan afleverer du din eksamensopgave i Wiseflow

Inden du afleverer, skal du tjekke at progexam.py kun indeholder definitioner af de
funktioner der er beskrevet i eksamensopgaven. Hvis du har skrevet yderligere kode
for at teste dine funktioner, skal du slette den inden du oplader din fil.

Du afleverer din eksamensbesvarelse ved at uploade disse to filer til Wiseflow:

• progexam.py skal afleveres som hoveddokument
• bioinfexam.py skal afleveres som bilag.

303

	Welcome
	Course description
	Course contents

	Curriculum
	Schedule
	Week 1
	Week 2
	Week 3

	Learning Python
	Preface
	Before you begin
	Install Python
	The text editor
	The terminal
	Create a conda environment for the course
	You are all set

	Appendix: Conda environment for BSF
	Creating an environment for BSF
	Starting PyMol

	Writing a program
	Hello World
	Error Messages
	Strings
	Comments

	Dealing with values
	Math
	Logic
	Variables
	Different types of values
	Mixed exercises

	The order of events
	Precedence of Operators
	Statements and Expressions
	Substitution and Reduction
	General exercises

	Course tools
	Wax on, wax off
	A helping hand

	Controlling behavior
	If-statement
	Else-statement
	Blocks of code
	Elif-statement
	General exercises

	Organizing code
	Functions
	Functions can take arguments
	Functions and variables
	Builtin functions
	General exercises

	Values are objects
	Methods
	Using the Python documentation
	String formatting
	Indexing and slicing strings
	General exercises

	Lists of things
	Lists
	Indexing and slicing lists
	General exercises

	Pairs of things
	Dictionaries
	General exercises

	Grouping values
	Tuples
	Tuple assignment

	Iterating values
	The for-loop

	Working with files
	Writing files
	Reading files
	General exercises

	Structuring data
	General exercises

	Recursion
	Recursion
	Divide and conquer

	Testing your code
	Why test your code?
	Basic testing
	The project testing utility

	Python projects
	Translating ORFs
	Project files
	Translating a single codon
	Splitting an open reading frame into codons
	Translating an open reading frame

	Primer analysis
	Count the number of bases in your candidate primer
	Compute the melting temperature
	Reverse complement the sequence
	Check for hairpins

	Pairwise alignment
	Filling in the dynamic programming matrix
	Reconstructing the optimal alignment

	Codon usage
	Read an open reading frame and count its codons
	Group codon counts by amino acid
	Turn counts into frequencies
	Compute the codon usage

	HIV sub-groups
	Compute the similarity of two sequences
	Read the HIV sequences into your program
	Compare your HIV sequence to HIV sequences of known subtype
	Compute maximum similarity to each subtype
	Identify the HIV subtype

	Sequence trees
	Measuring sequence distance
	Lower triangular distance matrices
	Generate a distance matrix
	Clustering
	Perform the clustering

	Finding genes
	Finding Open Reading Frames
	Translation of open reading frames
	Put everything together

	Genome assembly
	Read and analyze the sequencing reads
	Compute overlaps between reads
	Find the correct order of reads
	Reconstruct the genomic sequence

	Web exercises
	GWAS candidates
	Browsing SNPs from a GWAS
	Exploring a genomic region
	Gathering information about genes
	Exploring tissue expression
	Hypotheses and Discussion

	CCR5-delta32
	Human Immunodeficiency Virus targets immune cells
	Can specific gene variants provide resistance to HIV?
	Aim
	Preparation
	Aligning protein sequences
	Searching a database using Blast
	GenBank sequence format
	Putting it all together
	Project files

	MRSA
	Sequence Retrieval
	Database Searching using BLAST
	Multiple Sequence Alignment using ClustalW
	Discussion
	Additional tools

	Aardvark?
	Build a FASTA file
	One-click analysis
	Explore phylogeny - part 3
	Food for thought
	Project files

	Plasmid ORFs
	Project files

	Read mapping
	HIFI reads
	Project files

	Neural networks

	Supplementary
	Project files
	Python projects
	Web exercises

	Lecture recordings
	Week 1
	Week 2
	Week 3
	Week 4
	Week 5
	Week 6
	Week 7
	Week 8
	Week 9
	Week 10
	Week 11
	Week 12
	Week 13

	Lecture slides
	Databases and resources
	Knowledege data bases
	Do it yourself:

	Assignments
	Exam info
	Download the course homepage and Python documentation
	Example of exam assignment
	About the written exam
	Filer til brug ved eksamen
	Sådan løser du programmeringsopgaverne
	Sådan løser du bioinformatikopgaverne
	Sådan afleverer du din eksamensopgave i Wiseflow

