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Abstract

The X chromosome is uniquely exposed to selective pressures due to the lack
of a second copy in the hemizygous sex, leaving no buffer against deleterious
mutations, and giving unique inheritance patterns. Combined with its high
density of essential genes related to reproduction and brain function, this
suggests the presence of biological mechanisms that safeguard the integrity of
the X chromosome.
In this study, the 3D chromatin architecture of the X chromosome in rhesus
macaque (Macaca mulata) is investigated in the context of evolutionary pressures
and genetic drivers. To ensure transparency and reproducibility, we adopt a
comprehensive computational framework for publishing a version-controlled,
fully reproducible analysis.
We compare two Hi-C analysis frameworks, HiCExplorer and cooler/cooltools
(Open2C), on a subset, finding Open2C to be most flexible. The ICE method
(Iterative Correction and Eigendecomposition) was used to infer conventional
and refined A/B compartments for fibroblast and four stages of spermatogenesis.
We find 200 kbp transition-zones between A/B-compartments on the X chro-
mosomes in both fibroblasts and round spermatids that align well with strong
selective sweeps in humans (ECH-regions), but not with strong negative selec-
tion in baboons (Papio spp.). We find that most edges either overlap or are in
significant proximity of each other when comparing regions under selection
in human and baboons with A/B-compartments inferred Hi-C matrices at
100kb resolution and restricting eigendecomposition along the X chromosome
to 10Mb windows. We discuss the biological meaning of these findings, where
conserved chromatin features may help to retain non-advantageous alleles,
hinting to the role of structural features aiding in genome evolution.
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1 Introduction
The X chromosome plays a unique role in evolution, being directly exposed to selection pressures
due to its hemizygosity in males, leading to unique inheritance patterns. Regions of reduced
diversity on the X chromosome could reflect the influence of strong evolutionary forces that are
aided by structural features of the genome. Chromatin architecture, particularly the organization
into A/B compartments, may provide insights into the functional basis of these patterns.

Here, I analyze the 3D chromatin structure of the X chromosome in rhesus macaque (Macaca mulata)
using Hi-C data on the latest reference genome (rheMac10). The analysis extensively combines
software tools that emphasize reproducibility, ensuring that the analyses are transparent, portable,
and replicable.

1.1 Evolution on X

The production of gametes in a sexually reproducing organism is a highly complex process that
involves numeruous elements. Spermatogenesis, the process of forming male gametes, involves four
stages of differentiation from a germ cell through spermatogonia, pachytene spermatocyte, and round
spermatids to spermatozoa (Wang et al. 2019), and is the basis of male reproduction. The specialized
cell division of meiosis neatly handles the pairing, recombination, and segregation of homologous
chromosomes, thereby ensuring proper genetic distribution. A thorough understanding of the
molecular steps of reproduction and how genetic material is inherited is essential in biology,
bringing insight to areas such as speciation, population diversity, and infertility.

Sex chromosomes differ from autosomes in several ways, primarily due to their unique inheritance
patterns and copy number. The Y chromosome is present only in males, with a single copy per
individual. The X chromosome, on the other hand, has a more complex inheritance pattern: males
have one copy, while females have two. As a result, X chromosomes spend two-thirds of their time in
females and only one-third in males. This skewed ratio influences the dynamics of selection on the
X chromosome. Furthermore, in males, the single-copy nature of the X chromosome (hemizygosity)
means that any mutations or loss of function are directly exposed, as there is no second copy to
compensate. This concept also underpins Haldane’s rule (Haldane 1922), which states that in
hybrids of two species, the heterogametic sex (e.g., XY in mammals, ZW in birds) is the first to
exhibit reduced fitness, such as sterility, or to disappear entirely. Even a century later, the exact
reasons for this phenomenon remain debated, with several hypotheses proposed. These include:

• Y-incompatibility: The Y chromosome must remain compatible with the X chromosome or
autosomes.
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1 Introduction

• Dosage compensation: Hybridization may disrupt crucial dosage compensation mechanisms
in heterogametic individuals.

• Dominance: Recessive deleterious alleles may cause sterility when expressed in the heteroga-
metic sex.

• Faster-male evolution: Male reproductive genes may evolve more rapidly than female ones,
leading to incompatibilities.

• Faster-X evolution: X-linked loci may diverge more quickly than autosomal loci, contributing
to hybrid sterility.

• Meiotic drive: Conflicts between drivers and suppressors on sex chromosomes may result in
sterility.

These hypotheses highlight the intricate interplay between sex chromosomes, selection, and
hybridization (Cowell 2023). Furthermore, although this phenomenon is observed across various
taxa and even kingdoms, the underlying explanations differ, and there is no universal consensus
for all species. In many cases, multiple mechanisms from the listed explanations are thought to
act in concert (Lindholm et al. 2016). The complexity of selection on the X chromosome remains
an area of active research, with numerous studies suggesting strong selection pressures on the X
chromosome across primates. This topic is explored in greater detail in the following sections.

1.1.1 Extended Common Haplotypes (ECH) on human X

Incomplete lineage sorting (ILS) occur when all lineages in a population are not completely
sorted between two speciation events, resulting in a gene tree incongruent with the species tree
(Mailund, Munch, and Schierup 2014). Briefly, it complicates phylogenetic inference as it implies
that divergence time does represent speciation time. But, by solving the incongruency with a
maximum likelihood approach (see Mailund, Munch, and Schierup 2014), the relation between
the ILS proportion, 𝑝, time between two speciation events, Δ𝜏, and effective population size, 𝑁𝑒 , is
given by the formula

𝑁𝑒 =
Δ𝜏
2

ln
2𝑝

3
.

Then, by comparing the observed (local) ILS with the expected (e.g. a genomic average), a reduction
in 𝑁𝑒 can be used to infer selection. Additionally, as selective sweeps force lineages to coalesce,
sweeps will also cause a reduction in ILS. Dutheil et al. (2015) found that the human X chromosome
had reduced ILS compared to autosomes on a third of its sequence, fully explaining the low
divergence between human and chimpanzees. Reduced ILS co-occur with reduced diversity across
the X chromosomes of great apes, including human. Additionally, Neanderthal introgression was
depleted in the same regions, and the authors suggest that they are a target of selection, as they
rule background selection to be responsible for reduced ILS.
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1.1 Evolution on X

Low-diversity regions on the human X chromosome that also overlap with reduced human-chimp
ILS have been hypothesized to arise from selective sweeps between 55,000 (archaic introgression
after out-of-Africa event) to 45,000 (Ust’-Ishim man) years ago (Skov et al. 2023). The authors
define the time-span by comparing haplotypes of unadmixed African genomes with admixed
non-African genomes. Here, they locate megabase-spanning regions on the X chromosome where a
large proportion of the non-African population have reduced archaic introgression, hypothesizing
that selective sweeps have created these extended common haplotypes (ECHs). The ECHs span
11% of the X chromosome and are shared across all non-African populations. Similar to the low-ILS
regions, ECHs exhibit a complete absence of archaic introgression (Neanderthal and Denisovan).
Notably, the largest continuous ECH spans 1.8 Mb—more than double the size of the selective
sweep associated with the lactase persistence gene, which represents strongest selective sweeps
documented in humans (Skov et al. 2023; Bersaglieri et al. 2004). If such strong selection underlies
the observed low diversity, it suggests that factors beyond fitness effects alone may be contributing
to this pattern. This raises the possibility that the observed patterns of low diversity may result
not only from strong selective sweeps but also from several factors in combination. Structural
elements, such as physical linkage between the regions within ECHs, may facilitate coordinated
selection, maintaining reduced diversity over extended genomic stretches. Additionally, sex-specific
pressures, such as those linked to the unique transmission and evolutionary dynamics of the X
chromosome, could contribute to this pattern. Further investigation is needed to disentangle the
roles of these mechanisms in shaping the genomic landscape of the X chromosome.

1.1.2 Disproportionate minor parent ancestry on baboon X

As mentioned above, low ILS and reduced diversity is consistent across all great apes, and thus
the regions have been investigated in baboons as well. Sørensen et al. (2023) have mapped the
interspecies gene flow between baboon genomes in their evolutionary history, which revealed
male-driven admixture patterns in six different baboon species. The authors infer a male-driven
admixture from mismatching phylogenies of the mitochondrial DNA and the nuclear DNA. This
indicates a role of nuclear swamping, where the nuclear DNA from one species progressively
replaces that of another through repeated hybridization and backcrossing, while the mitochondrial
DNA, inherited maternally, remains unaffected. This pattern suggests that male-driven gene flow
plays a significant role in shaping the genomic landscape of these regions, potentially impacting
diversity and co-ancestry across species. Sørensen et al. (2023) compare the ratio of admixture
between chromosome 8/X across the populations, which support the same pattern. Recently, in a
yet unpublished analysis by Munch (2024), exceptionally large regions (up to 6 Mb, averaging 1 Mb)
were identified on X in olive baboon (Papio anubis), where either all individuals had olive ancestry,
or 95% of the individuals had hamadryas ancestry, significantly diverging from the background
proportions, suggesting that these regions may be under strong selective pressures, are influenced
by structural genomic features that limit recombination, or potentially both. Such patterns suggest
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1 Introduction

that certain chromosomal regions are either preserved due to adaptive advantages or subjected to
sex-biased gene flow, further reinforcing the impact of male-driven admixture on shaping genomic
variation. These findings highlight the complexity of admixture dynamics and their potential to
create localized genomic signatures that deviate from overall ancestry proportions.

Sørensen et al. (2023) highlights the importance of studying these populations, as they serve
as models for understanding genomic separation in archaic hominin lineages while inhabiting
comparable geographic ranges. Studying closely related, extant primate species provides a unique
opportunity to gain insight into how hominin (human, Neanderthal, Denisovan) phylogenies were
formed. By analyzing the intricate effects of population structure, migration, and selection in
these species, we can draw parallels and infer events in our own archaic evolutionary history. See
Figure 1.1 for a genomic overview of the abovementioned sets of regions.

Figure 1.1: Visual representation of the selected regions for the baboon comparison. Shown are the ECH90 (top),
high-olive (middle) and high-hama (bottom) regions, the basis of the comparison of genomic intervals in this
analysis. All coordinates are lifted to the rheMac10 genome.

1.2 Chromatin Architecture

The specific regions under strong selection identified across primate species, including humans
and baboons, are all located on the X chromosome and span megabase-scale genomic regions.
As mentioned above, alternative mechanisms, such as the chromosomal architecture and its
rearrangements, could play critical roles in facilitating, regulating, or buffering these regions from
selective forces.

Therefore, understanding the genome organization and variation could gain insights regarding
mechanisms of selection as well. Chromatin has long since been implicated in gene regulation and
the functional state of the cell (Lieberman-Aiden et al. 2009), as the three-dimensional structure of the
chromosome can bring distant regions in close proximity, and disrupting the organization can lead
to development abnormalities (Dixon et al. 2015). Chromatin is hierarchically compartmentalized,
meaning multiple orders of organizaion can be nested under each other (see Figure 1.2). At the
large end, compartments can span multiple megabases (Lieberman-Aiden et al. 2009), and in the
small end as little as 500 base pairs have been showed to aid subgenic structural organization. Even
at sub-megabase scales, at the level of topologically associating domains (TADs) or chromatin loops
(Ramírez et al. 2018; Zuo et al. 2021), the structure helps segregate regulatory elements and ensure
proper function.
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1.3 3C: Chromatin Conformation Capture

Figure 1.2: DNA is organized at multiple hierarchical structures. Figure from Misteli (2020).

Analyzing 3D chromatin data from rhesus macaques, a widely used primate in experimental studies,
could answer the question of whether regions under selection are intertwined with chromosomal
organizational features. Studying the chromosomal architecture through gametogenesis, particularly
spermatogenesis, could provide valuable insights about meiotic recombination and its relationship
to genome organization. If they correlate with regions under selection across primates, we have
new mystery to explain.

Wang et al. (2019) found that through the stages of spermatogenesis, chromatin compartmental-
ization undergo massive reprogramming, going from megabase-spanning compartments through
smaller, refined compartments and back to the megabase compartments. The reprogramming
is conserved between rhesus macaque and mouse, indicating a very important feature of the
organization, but the author does not test whether genomic positions of the compartments are
conserved between species. Extending their analysis of chromatin compartmentalization through
spermatogenesis could make an obvious starting point for investigating the relationship between
yet another set of megabase-spanning regions and those of strong selection identified above.

1.3 3C: Chromatin Conformation Capture

The first method developed to capture long-range interactions between pairs of loci was 3C,
which uses spatially constrained ligation followed by locus-specific PCR (Lieberman-Aiden et al.
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2009). Subsequent advancements introduced inverse PCR (4C) and multiplexed ligation-mediated
amplification (5C). A limitation common to these methods is their inability to perform genome-wide,
unbiased analyses, as they require predefined pairs of target loci.

DNA can be organized into different structural levels. 3C focuses on identifying the higher-
order organization within the nucleus, such as when the 30 nm chromatin fiber folds into loops,
Topologically Associating Domains (TADs), and chromatin compartments.

1.4 Hi-C: High-Throughput 3C

The introduction of the Hi-C (high-throughput 3C) method (Lieberman-Aiden et al. 2009)
opened new possibilities for exploring the three-dimensional organization of the genome, as
deep-sequencing technologies combined with high-performance computing allow for genome-wide
analysis that is unbiased. Lieberman-Aiden et al. (2009) show that when combining spatially
constrained ligation with deep parallel sequencing and subsequent analysis, we can infer distinct
chromosomal territories as intrachromosomal contacts were significantly less abundant than in-
terchromosomal contacts. The method also confirmed the spatial separation of two chromatin
conformations in its active (open) state or inactive (closed) state, as they were significantly correlated
with distances measured by fluorescence in-situ hybridisation (FISH). The two comformations
were termed A- and B-compartments, respectively, and A defined to positively correlate with gene
density. Finally, they showed that loci are physically more proximal when they belong to the
same compartment implying that Hi-C reads serves well as a proxy for distance. Later, several
smaller-order domains were inferred with the same method, such as topologically associating
domains (TADs) and chromatin loops. Here, we narrow our focus on the largest of the structures,
compartments, that is known to determine availability to transcription factors, thus making an A
compartment active—and the B compartment inactive.

1.4.1 Hi-C Library preparation

A specialized protocol for preparing the DNA library is necessary (Lieberman-Aiden et al. 2009, fig.
1a). Briefly, formaldehyde is used to crosslink spatially adjecent chromatin. Restriction enzyme
HindIII is used to digest the crosslinked chromatin, leaving sticky ends, 5-AGCT-3, that are filled
and biotinylated with a polymerase (using either biotinylated A, G, C, or T). The strands are ligated
in highly dilute conditions, which is favoring the ligation of the two crosslinked strands, forming
chimeric, biotinylated strands. Upon ligation, the restriction site is lost as a biotinylated 5-CTAG-3
site (also referred to as the ligation junction) is formed. Lastly, the ligation junctions are isolated
with streptavidin beads and sequenced as a paired-end library.

To be able to create stage-resolved Hi-C library of spermatogenetis, several steps have to be performed
on the samples before crosslinking. First, the samples have to be treated immediately after harvesting
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1.4 Hi-C: High-Throughput 3C

to ensure viable cells. Secondly, the samples have to be purified to accurately represent each stage og
spermatogenesis. Specifically, the data for this project (Wang et al. 2019, acc. GSE109344) preluded
the library preparation protocol by sedimentation-based cell sorting to separate live spermatogenic
cells into different stages of differentiation, namely spermatogonia, pachytene spermatocyte, round
spermatid, and spermatozoa. Then, the cells were fixed in their respective state before crosslinking.
The authors use their own derived method for library preparation, termed small-scale in-situ Hi-C,
allegedly producing a high-quality Hi-C libary from as little as 500 cells (capturing the variance of
millions of cells).

Initially, Hi-C library preparation was designed to generate molecules with only a single ligation
site in each, but with advancements in sequencing technology (‘short-reads’ can now span several
hundreds of base pairs) and the shift to more frequently cutting restriction enzymes for higher
resolution results in multiple ligation events per sequenced molecule (Open2C et al. 2024), which is
adressed in the section below.

1.4.2 Hi-C Data Analysis

The analysis of the read-pairs of a Hi-C library is divided into several smaller tasks, see Figure 1.3.

Figure 1.3: A simplified pipeline for Hi-C data analysis: from raw reads to a Hi-C interaction matrix. See Table 1.1 for
details on ligation events.

The reads must be aligned to the reference in such a way that the intentional chimeric read-pairs (as
per above-mentioned protocol) are rescued, and unintentional read-pairs are discarded. That is, we
must make sure they represent ligation junction of adjecent chromatin segments, and not technical
artefacts or unintentional (random) fusions of unrelated DNA.
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1 Introduction

Aligning the Hi-C reads The main difference between Hi-C libraries and standard paired-end
libraries is the high fraction of chimeric reads in Hi-C. As a contact pair is crosslinked and ligated
before sequencing, chimeric reads occur as a feature, and standard mapping techniques seeks to
filter out this type of reads (Lajoie, Dekker, and Kaplan 2015). Thus, we need specialized tools for
rescuing chimeric reads. That said, we have to be cautious distinguishing the intended chimerism for
Hi-C and that of technical artefacts. Any software for local alignment can be used for aligning reads
from a Hi-C library. However, one should make sure to disable paired-end rescue mode if possible,
otherwise each read in a pair (each mate) should be aligned separately (Lajoie, Dekker, and Kaplan
2015). This removes the assumption that the distance between mates fits a known distribution
because the genomic sequences originate from a continuous DNA-fragment. For example, the
bwa-mem (Li 2013) implementation of this (the -P option) activates the Smith-Waterman algorithm
to rescue missing hits, but disables the search of hits that fit a ‘proper’ pair. After alignment, each
read is typically assigned to the nearest restriction fragment to enable categorization of pairs into
different categories.

Interestingly, this last step is not included by default in pairtools, as Open2C et al. (2024) observe
very similar statistical properties on pairs that are either close or distant from the nearest restriction
site. Thus, restriction fragment filters are not needed, and instead, a simple filter is applied against
short-distance pairs that is automatically calibrated.

Identifying and Storing Valid Hi-C Pairs One should be cautious when filtering invalid from
valid pairs, as they are not easily distinguished. A ligation event will be categorized into one of five
categories (see Table 1.1): dangling-end, self-circle, weird, intrachromosomal (cis), and interchromosomal
(trans) (Bicciato and Ferrari 2022, Ch. 1). Either dangling-end or self-circle events are reported if
a read-pair maps to the same restriction fragment depending on the orientation, and deemed
uninformative (Lajoie, Dekker, and Kaplan 2015). Usually, weird events are demeed uninformative
as well, as it is challenging to distinguish a sequencing error from the result of a diploid fragment.
PCR duplicates should be discarded as well, having either identical genomic sequence, or sharing
exact 5’ alignment positions of the pair (Lajoie, Dekker, and Kaplan 2015; Bicciato and Ferrari 2022,
Ch. 1). The probability that such pairs are valid (i.e. there are multiple of the same pairs) is very
low. We also have to distinguish between molecules with only a single ligation event (one-way
contact) or multiple ligation events (multi-way contacts). For that, a descision should be made
on whether to 1) discard molecules with multiple ligations, 2) report one of the ligations (e.g. the
5’-most in both directions), or 3) report all events on a molecule.

Table 1.1: Five categories of ligation events and a short explanation. Hi-C Data Analysis: Methods and Protocols Ch. 1.

Event name Explanation

Dangling-end Non-digested collinear fragments. Fraction can be high.
Self-circle Collinear fragment(s) have circularized. Very low fraction could indicate unsuccesful ligation.
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1.4 Hi-C: High-Throughput 3C

Event name Explanation

Weird Mates have the same orientation on the reference. Is not possible with single copy fragment.
Either sequencing errors or diploid fragments1.

Cis Pairs from the same chromosome (intrachromosomal)
Trans Pairs from distinct chromosomes (interchromosomal)

Quality Control and Interaction Matrices To determine the quality of the Hi-C library, most
tools generate quality control log files at some point during the filtering steps, which can then be
aggregated and analyzed (with e.g. MultiQC Ewels et al. (2016)). The ratios between the different
ligation events can be informative about the quality of the Hi-C library. Here, both the distribution
of discarded reads across categories, as well as the ratios between cis/trans interactions for a certain
organism provide information about the library. For example, the biases of different aligners might
be captured by comparing the reason why reads are discarded between two different aligners,
as well as whether or not there is a preference of cis or trans in an aligner itself. This allows for
evaluating the mapping parameters as well as the filters applied downstream. Additionally, 𝑃(𝑠),
the contact probability as a function of genomic separation can be inspected as it should decay with
increasing distance. The trans/cis-ratio can sometimes be a good indicator of the noise level in
the library, and additionally, the level of random ligation events can be quantified by counting the
number of trans events occurring to mitochondrial genome. They should not occur naturally, as the
mitochondrial genome is separated from the DNA in the nucleus. This method has some pitfalls
that should be controlled for; some parts of the mitochondrial genome can be integrated into the
host genome, and mitochondrial count may differ between cell-stages.

Typically, a filter against low mapping quality is applied on the data before constructing the
interaction matrix (Hi-C matrix), and a conventional threshold is 𝑚𝑎𝑝𝑞 < 30 (Bicciato and Ferrari
2022). However, a considerable amount of reads do not pass that threshold, and thus we risk
discarding potential valid information and should make sure to have enough data. Consequently,
HicExplorer defaults to a lower threshold (𝑚𝑎𝑝𝑞 < 15), and pairtools enforces no filter by default, but
recommends setting this manually (starting at 𝑚𝑎𝑝𝑞 < 30).

A Hi-C interaction matrix simply maps the frequency of interactions between genomic positions
in a sample. The maximum resolution of a Hi-C matrix is defined by the restriction enzyme,
where the size of the restriction site (probabilistically) determines average space between each
cut. With a 4 bp restriction site, the fragments will average 44 = 256𝑏𝑝 and similarly 46 = 4096𝑏𝑝

for a 6 bp restriction site. This leads to ~12,000,000 and ~800,000 fragments, respectively. Very
deep sequencing is required to achieve enough coverage to analyze the interaction matrix at the
restriction fragment resolution, but, usually, such high resolution is not required. Therefore, it

1Bicciato and Ferrari (2022) mentions that this type of ligations had been used to model interaction between sister-
chromatids post-replication in Drosophila.
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1 Introduction

is common practice to bin the genome into fixed bin sizes, which also enables a more efficient
handling of the data if the full resolution is not needed (e.g. when plotting large regions such
as a whole chromosome). The conventional format to store a Hi-C matrix, consisting of large
multidimensional arrays, is HDF5. Each HDF5 file can store all resolutions and metadata about the
sample, resolutions typically ranging from 10kb to 1Mb. Typically, the stored resolutions should
be multiples of the chosen base-resolution, as the lower resolutions are constructed by recursive
binning of the base resolution. cooler (Abdennur and Mirny 2020) neatly offers efficient storage
with sparse, upper-triangle symmetric matrices and naming-conventions of the groups in their
.h5-based file format, .cool, and they provide a Python class Cooler as well for efficiently fetching
and manipulating the matrices in Python.

Inferring from the matrix (Calling Compartments) The raw frequency matrices are generally
not very informative, as the contact frequencies vary greatly between bins and contain biases in
addition to the 𝑃(𝑠) decay, which results in a diagonal-heavy matrix with high amount of noise
the further we travel from the diagonal. Therefore, to analyze the three-dimensional structure of
the chromatin, a method for correcting (or balancing) the raw Hi-C matrix has to be applied. It is
unadvisable to correct low-count bins as it will greatly increase the noise, or to correct very noisy
bins, or very high-count bins. Therefore, some bin-level filters are applied before balancing (Lajoie,
Dekker, and Kaplan 2015);

• Low-count bins are detected by comparing bin sums to the distribution of bin sums with a
percentile cutoff,

• Noisy bins are detected by comparing bin variance to the variance distribution of all bins (and
percentile cutoff), and

• Outlier point-interactions are removed (a top-percentile of bin-bin interactions)

Iterative Correction and Eigendecomposition (ICE) (Imakaev et al. 2012) is a widely used method
for correcting multiplicative biases in Hi-C data. ICE operates on the assumption that all loci should
have roughly equal visibility across the genome, meaning that the total number of interactions
per locus should be uniform. It corrects the raw interaction matrix by iteratively scaling rows
and columns until they converge to a consistent coverage. By leveraging pairwise and genome-
wide interaction data, ICE calculates a set of biases for each locus and normalizes the interaction
frequencies accordingly. This process results in a corrected interaction matrix with uniform coverage,
smoother transitions, and reduced visibility-related biases. Notably, ICE does not distinguish
between different sources of bias, instead calculating a collective bias for each locus. Imakaev
et al. (2012) show that known biases are factorizable by comparing their results to predictions
of restriction fragment biases, GC content, and mappability from a computationally intensive
probabilistic approach. By showing that the product of those known biases explain > 99.99 of
the variability in their bias estimation, they argue that both known and unknown biases will be
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captured with their iterative correction method (also denoted matrix balancing).

Even with a binned, filtered, and balanced matrix, we are still left with the challenge of translating
the matrix into biologically relevant inferations. Importantly, we have to remember that the matrix
arise from a collection of cells and that the interaction frequency cannot be translated to a fraction of
cells. Additionally, the effect from averaging interaction patterns can cause both individual patterns
to be burried and the average pattern to show a pattern that does not exist in any of the single cells.
Therefore, when pooling matrices one must make sure that the samples are as similar as possible
(e.g. the same differentiation stage and so on). We can also not distinguish interactions that either
co-occur in the same cell or ones that are mutually exclusive. Lastly, the way interaction patterns are
defined poses a challenge; we define the chromatin compartments to be the output of a method, the
‘E’ in ‘ICE’, eigendecomposition, not as a specific pattern that we can explicitly search for. Although
experimentally verified to tightly correlate with chromatin states (Lieberman-Aiden et al. 2009), the
inferred compartments vary with different methods of calculating the eigenvector, as dicussed in
Section 2.3 and Section 3.2.3. To further complicate the challenge, interaction patterns on different
scales co-exist and are difficult to disentangle without simplifying assumptions, such as assuming
that small-scale interactions are not visible (or are negligible) at a certain resolution, or restricting
the viewframe to eliminate large-scale variance between chromosome arms. It is by definition a
speculative exercise to interpret the biological relevance of an observed pattern, but the consensus
is to call compartments on interacting regions that arise from the eigendecomposition of a Hi-C
matrix without further modifications (Lajoie, Dekker, and Kaplan 2015). Briefly, each genomic bin is
assigned a value reflecting its compartment identity, where positive values indicate compartment A
and negative values indicate compartment B. The interaction score between two loci is represented
as the product of their compartment values, resulting in enriched interactions for loci within the
same compartment (positive product) and depleted interactions for loci in different compartments
(negative product). This model reproduces the checkerboard pattern characteristic of Hi-C data.
Principal component analysis (PCA) identifies the first principal component, which optimally
captures the strongest compartment signal. The sign of this component determines whether a
locus belongs to compartment A or B. As the eigenvector is only unique up to a sign change, a
phasing track is used to orient the eigenvector, aiming for a positive correlation with GC content
(in mammals), so that A-compartments represent the active euchromatin, while B-compartments
represent the closed heterochromatin.

Compartment Edges and Genomic Intervals As arbitrarily as a compartment may be defined,
we chose to define another genomic interval for analysis. It is well known that CTCF and other
structural proteins preferentially binds to Topologically Associating Domains (Bicciato and Ferrari
2022, Ch. 3) (TADs; they were initially defined as sub-Mb chromatin structures (Lajoie, Dekker,
and Kaplan 2015), but currently the definition seems to vary based on the method of extraction
(Open2C et al. 2022)). Derived from this, we define a transition zone between A/B compartments
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to look for enrichment of specific regions of interest.

We can test if two sets of genomic intervals correlate (say, compartment edges and ECH regions)
by either proximity of the non-intersecting parts of the sets, or by intersection over union (Jaccard
index). When the underlying distribution of a statistic (or index) is unknown, a widespread method
in statistics for estimating a p-value is by bootstrapping. Here, one of the sets are bootstrapped (the
intervals are placed at random positions) a number of times, 𝑏, and the fraction of statistics more
extreme than the one we observe is reported as the p-value.

1.5 Reproducibility Infrastructure

Listing 1.1 Three simple steps to re-create the project.

1 git clone https://github.com/munch-group/hic-spermatogenesis.git
2 conda env create -f binder/environment.yml
3 gwf run

Reproducibility is a cornerstone of the scientific method, ensuring that findings can be independently
verified and built upon by others. Without it, the credibility of research findings is undermined,
hindering scientific progress by becoming anecdotal. The necessity of reproducibility also aligns
with scientific skepticism—the practice of critically evaluating evidence and methods to guard
against biases or errors. As research grows increasingly computational, robust reproducibility
infrastructure is essential to maintain these principles (Baker 2016), facilitating transparency,
validation, and collaboration across diverse scientific disciplines. Thus, apart from the biological
questions we seek to investigate and answer in this thesis, a major goal is to create fully (and easily)
reproducible results through a self-contained and version-controlled pipeline using git (Torvalds
and Hamano 2005), GitHub (GitHub, Inc. n.d.), quarto (Allaire et al. 2024), Anaconda (Anaconda
Software Distribution 2016), gwf (GenomeDK 2023), and Jupyter (Kluyver et al. 2016). The result is
a fully reproducible analysis, including figures and tables in only 3 lines of code2 (Listing 1.1) . See
Table 1.2 for a brief overview:

Table 1.2: Overview of the tools used for reproducibility of this thesis.

Tool Description

Jupyter Interactive coding environment for analysis and development (notebooks are natively
rendered with Quarto)

Quarto A Quarto Manuscript project nested inside a Quarto Book for rendering html (website) and
PDF (manuscript) from Markdown via Pandoc. Supports direct embedding of output from
Jupyter Notebook cells (plots, tables).

Conda For managing software requirements and dependency versions reproducibly.
git Version control and gh-pages branch for automated render of Quarto project

2And access to a high-performance computer with at least 12 TB storage and 32 CPU-cores, and a couple of days waiting
time (else gwf run will fail as it asks for a lot of resources).
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Tool Description

GitHub Action was triggered on push to render the project and host on munch-group.org
gwf Workflow manager to automate the analysis on a HPC cluster, wrapped in Python code.

workflow.py currently does everything from .fastq to .cool, but notebooks can be set to run
sequentially as part of the workflow as well.

1.5.1 GWF: workflow management for High-Performance Computing (HPC)

To enable consistently reproducing the analyses, a workflow manager is utilized. Several exist, but
the most well-known is likely Snakemake. However, we use the pragmatic (authors’ own words),
lightweight workflow manager GWF, which is optimized for the GenomeDK insfrastructure, and
has the benefit of in-house support.

Briefly, GWF works on a python script, conventionally workflow.py, that wraps all the jobs (targets
in gwf lingo) you will submit to the HPC cluster. Each target is submitted from a template, written
as a Python function, which includes inputs and outputs that GWF should look for when building
the depency graph, options list of resources that is forwarded to the queueing system (Slurm in
our case), and specs, specifying the submission code in Bash as a formatted Python string (meaning
we can pass Python variables to the submission code), providing an extremely flexible framework
for running large and intensive analyses in a high-performance computing environment.

1.5.2 Project Initialization

gwf The initialization of the project directory is the basis of reproducibility and transparency,
together with workflow.py inhabiting the main directory. Specifically, it includes a subdirectory
for (intermediate) files that are produced by the pipeline, steps/. Everything in this directory is
reproducible simply by re-running the gwf -workflow. It is thus not tracked by git, as the large
files (raw reads, aligned read-pairs, etc.) it contains are already indirectly tracked (workflow.py
is tracked). It can be safely deleted if your system administrator tells you to free up disk space,
although you would have to run the workflow again to continue the analysis. Several directories
are created for files that are not produced by the pipeline, that is, files that the workflow uses,
configuration files, figures edited by hand, etc. Ideally, as few files as possible should be outside of
steps/, to be as close as possible to an automated analysis.

Jupyter Notebooks A notebooks/ subdirectory contains Jupyter notebooks that are named
chronologically, meaning they operate on data located in either steps/ or generated from a previous
notebook. This way, the workflow can also be set up to run the notebooks (in order) to produce the
figures, tables, and their captions used in this manuscript.
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Quarto Quarto is an open-source scientific and technical publishing system that uses (pandoc)
markdown to create and share production quality output, integrating Jupyter Notebooks with
Markdown and LaTeX and enabling embedding content across .ipynb and .qmd. In .qmd, code chunks
in several programming languages can be executed and rendered, including Python, R, mermaid
(JavaScript-based diagramming). A Quarto project is configured with a YAML configuration file
(_quarto.yml) that defines how output is rendered. In this project, we use a nested structure,
nesting a Slides project and a Manuscript project inside a Book project. To manage the directory
as a Quarto Book project, a quarto configuration file was placed at the base, defining how the
Book should be rendered. Additionally, configuration files were placed in slides/ and thesis/, to
render them as Quarto Slides and Quarto Manuscript, respectively. This nested structure lets us
render different subprojects with different configurations than the main project, for example to
generate the manuscript, a single Quarto Markdown file, in both .html and .pdf, and only including
embedded outputs from specified cells from notebooks in the parent directory. Although the
Quarto framework is extensive, it is still under development and has several drawbacks worth
mentioning. First, one can only embed the output of code cells from notebooks, meaning the
only way to embed text with a python variable (e.g. you want the manuscript to reflect the actual
value of a variable, sample sizes n = [1000, 10000, 100000], and their respective outputs) is by
converting a formatted python string into Markdown and send it to the output. Second, embedded
figures will be copied as-is in the notebook, and thus cannot be post-processed with size or layout.
This makes it impractical to e.g. use the same figures in slides and in the manuscript. Third, when
rendering large projects that is tracked by git, some output files (that have to be tracked to publish
the website) can exeed GitHub size limits. Especially if rendering in the jats format, producing
a MECA Bundle that should be the most flexible way to exchange manuscripts. However, as not
applicable to this thesis, the option was simply disabled. Fourth, some functionality relies on
external dependencies that cannot be installed on a (linux) remote host (GenomeDK), such as
relying on a browser for converting mermaid diagrams into png for the pdf-manuscript.

1.5.3 git and GitHub

To track the project with git and GitHub, the abovementioned structure was initialized as a GitHub
repository, including a workflow for GitHub Actions to publish and deploy the website on the
gh-pages branch when pushing commits to main. Briefly, it sets up a virtual machine with Quarto
and its dependencies, renders the project as specified in the _quarto.yml configuration file(s), and
publishes the project on the group website munch-group.org.
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2 Methods
All computations were performed on GenomeDK (GDK), an HPC cluster located on Aarhus
Uninversity, and most of the processing of the data was made into a custom GWF workflow, a
workflow manager developed at GDK.

With the analysis tools determined in the above section, I decided it was not feasible to follow the
exact approach as Wang et al. (2019) with any of HiCExplorer and Open2C, as they use a third
software, HiC-Pro. For mapping the raw reads, Hic-Pro internally uses bowtie2 in end-to-end mode,
followed by trimming the 3’-end of the unmapped reads, then remapping the 5’-ends to rescue
chimeric fragments. I initially mapped the reads using end-to-end Bowtie2 without the rescue-
remapping feature, resulting in a very high fraction of discarded reads. Manually implementing the
remapping approach would be impractical. When reanalyzing data, it is important to use state-of-
the-art tools. Considering the release timeline (e.g., HiC-Pro v3.1.0 in 2021), both HiCExplorer and
Open2C are more recent and likely offer better support for current methodologies. Additionally,
the HiC-Pro pipeline stops at a normalized contact map, and is thus not sufficient for downstream
analysis. In hindsight, it would have been more sensical to use HiC-Pro to get normalized contact
maps, then continue analyzing with cooler/cooltools, and finally compare the results evenly with
the results achieved from using Open2C from start to finish. Figure 2.1 gives an overview of the 3
pipelines metioned in this report.

2.1 Fetching raw data

To reproduce the results from Wang et al. (2019), I chose to use their raw data directly from the SRA
portal (Sayers et al. 2022). I filtered the data to contain all their paired-end Hi-C reads, and included
only macaque samples. The dataset also contains RNAseq data, and the same tissues for both
macaque and mouse. The metadata for the dataset was extracted into a runtable SRA-runtable.tsv.
To get an overview of the data accessions used in this analysis, we will first summarize the runtable
that contains the accession numbers and some metadata for each sample (Table 2.1). It adds up to
~1Tb of compressed fastq files, holding ~9.5 billion reads, roughly evenly spread on the 5 tissue
types.

Table 2.1: Summary of the data accessions used in this analysis

source_name GB Bases Reads

0 fibroblast 211.403275 553,968,406,500 1,846,561,355
1 pachytene spermatocyte 274.835160 715,656,614,700 2,385,522,049
2 round spermatid 243.128044 655,938,457,200 2,186,461,524
3 sperm 164.131640 428,913,635,400 1,429,712,118
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Table 2.1: Summary of the data accessions used in this analysis

source_name GB Bases Reads

4 spermatogonia 192.794420 518,665,980,300 1,728,886,601

2.1.1 Fetching and indexing the reference

Wang et al. (2019) use the 2006-version of the macaque reference, rheMac2. Supporting my previous
sentiment about not using outdated resources I find it most reasonable to use the latest reference,
rheMac10, where Warren et al. (2020) have improved contiguity from rhemac8 by 120 fold, going
from N50 contig size of 107 Kbp to 46 Mbp. Reproducing the analysis on the latest assembly of the
macaque genome should therefore gain a more accurate read mapping, and consequently a better
inference of the chromatin compartments. Therefore, rheMac10 was downloaded to GDK from
UCSC web servers. To use bwa for mapping, rheMac10 needs to be indexed with both bwa-index
with the --bwtsw option and samtools-faidx, which results in six indexing files for bwa-mem to use.
Both bwa-mem and bowtie2 were used in different configurations, and bowtie2 requires its own
indexing of the reference, using bowtie2-build with the --large-index option, which creates six
index files for bowtie2 to use. The options --bwtsw and --large-index create the special indexing
format required for large genomes such as macaque. As we use the position of the centromere to
partition chrX into its two arms, and no comment about it was made by Warren et al. (2020), the
centromeric region was inferred (visually) from the UCSC browser view of rheMac10, where a large
continuous region (chrX:57.5Mb-60.2Mb) had no annotation and showed many repeating regions.
The region is roughly the same region as inferred by Wang et al. (2019) by the same method.

2.2 HiCExplorer trials

To get aligned reads in a format compatible with HiCExplorer, the read mates have to be mapped
individually to the reference genome. This supports the old convention to avoid the common
heuristics of local aligners used for regular paired-end sequencing libraries (Lajoie, Dekker, and
Kaplan (2015)). HiCExplorer provide examples for both bwa and bowtie2, so I used both with
recommended settings. In both cases, the aligner outputs a .bam-file for each mate (sample_R1.bam
and sample_R2.bam), and HiCExplorer performs the parsing, deduplication, and filtering of the
reads and builds the raw interaction matrix in a single command,

hicBuildMatrix -s sample_R1.bam sample_R2.bam -o matrix.h5 [...]

Figure 1.3 (middle) shows an overview of the pipeline. For parsing, the command needs a
--restrictionCutFile, locating the restriction sites from the restriction enzyme used on the
reference genome, which is generated with hicFindRestSites that operates on the reference
genome and restriction sequence. The default filter, --minMappingQuality 15, was applied as
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Figure 2.1: A 3-column flowchart of HiC-Pro, HiCExplorer, and Open2C
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described in Section 1.4.2. Notably, HiCExplorer has no options on handling multiple ligations, and
the method is undocumented. I assume that Ramírez et al. (2018) have implemented a conservative
handling (masking all multiple ligations), as that would have the least consequence.

Table 2.2: The samples chosen for initial data exploration with HiCExplorer. From NCBI SRA Portal.

Run Bases Bytes source_name

0 SRR6502335 73201141800 31966430779 fibroblast
1 SRR6502336 65119970100 24433383054 fibroblast
2 SRR6502337 52769196300 23015357755 fibroblast
3 SRR6502338 52378949100 22999581685 fibroblast
4 SRR6502339 28885941600 10960123150 fibroblast

For the initial exploration of methods with HiCExplorer, I chose five fibroblast samples (see
Table 2.2). The goal was to replicate some of the figures from Wang et al. (2019) using HiCExplorer,
especially to reconstruct interaction matrices and E1 graphs from macaque data. We constructed
matrices with hicBuildMatrix as described from the separately mapped read-pairs. Along with
the matrix .h5 file, a .log file was created as well, documenting the quality control for the sample.
Multiple logs were aggregated and visualized with hicQC.

Before correction (or balancing) of the interaction matrix, a pre-correction filter is applied, filtering
out low-count bins and very high-count bins. A threshold for Mean Absolute Deviation (MAD)
is estimated by hicCorrect diagnostic_plot, followed by iterative correction with hicCorrect
correct --correctionMethod ICE. The PCA was performed with hicPCA on the corrected matri-
ces, yielding the first 3 PCs.

The matrix plotting function, hicPlotMatrix, plots matrices directly to .png, and so there is no
output sent to the Jupyter display. As I kept the analysis in a Jupyter Notebook (using the buikt-in
shell-escape commands to execute bash code), the plot files must be embedded back into the
notebook. The command-line options for modifying plots are quite limited, such as adding spacing
for a bigWig track with E1 values, including plot titles, or defining the size and resolution of the
plot. I made a brief attempt to implement a custom plotting function for the .h5 matrices and
bigWig tracks. However, this approach had a major limitation: it could not fetch specific regions
from the matrix dynamically and instead required loading entire matrices into memory, including
full-length chromosomes.

2.3 Open2C pipeline

A GWF workflow was created to handle the first part of the data processing, and each accesion
number (read pair, mate pair) from the Hi-C sequencing was processed in parallel, so their execution
was independent from each other. See Figure 1.3 (right) for an overview of the initial steps.
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Downloading the reads The reads were downloaded from NCBI SRA with SRA-toolkit (DevTeam
2024) directly to GDK using the docker image wwydmanski/sra-downloader as gunzipped .fastq
files. Although possible to provide a list of accessions to the toolkit, I submitted each accession
as a separate target, as SRA-Toolkit acts sequentially, and only starts the next download after all
compression tasks were done. It was therefore a low-hanging fruit to parallelize the download for
efficiency.

Mapping Hi-C reads Suspiciously, (“Open2C” n.d.) do not mention any problems with aligning
the Hi-C reads, they just provide an example using bwa-mem in paired-end mode and with
the -P option set, which activates the Smith-Waterman (Li 2013) algorithm to rescue missing
hits, by focusing on assigning only one of the mates to a good mapping and escape mate-rescue.
The documentation of bwa state that both bwa-mem and bwa-sw will rescue chimeric reads.
Consequently, Open2C does not have a buikt-in way of pairing the reads after mapping, and the
reads were thus mapped using Open2C’s recommendations, using their established pipeline for
producing a cooler. I chose the latter, where I mapped the fastq files to rheMac10 in paired end
mode for a pair (𝑚1, 𝑚2) with bwa mem -SP rheMac10 m1 m2.

Parse and sort the reads We need to convert the alignments into ligation events, and distinguish
between several types of ligation events. The simplest event is when each side only maps to
one unique segment in the genome ‘UU’. Other events, where one or both sides map to multiple
segments or the reads are long enough (> 150𝑏𝑝) to contain two alignments (multiple ligations)
have to be considered as well. Multiple ligations are called walks by Open2C, and are treated
according to the --walks-policy when parsing the alignments into valid pairs (or valid Hi-C
contacts). Here, mask is the most conservative and masks all complex walks, whereas 5unique
and 3unique reports the 5’-most or 3’-most unique alignment on each side, respectively, and all
reports all the alignments. The pairs are piped directly into pairtools sort after parsing, as the
deduplication step requires a sorted set of pairs. The .pairs-format produced by pairtools is an
extension the 4DN Consortium-specified format, storing Hi-C pairs as in Table 2.3.

Table 2.3: Column specification of the .pairs format as extended by pairtools.

Index Name Description

1 read_id the ID of the read as defined in fastq files
2 chrom1 the chromosome of the alignment on side 1
3 pos1 the 1-based genomic position of the outer-most (5’) mapped bp on side 1
4 chrom2 the chromosome of the alignment on side 2
5 pos2 the 1-based genomic position of the outer-most (5’) mapped bp on side 2
6 strand1 the strand of the alignment on side 1
7 strand2 the strand of the alignment on side 2
8 pair_type the type of a Hi-C pair
9 mapq1 mapq of the first mate
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Index Name Description

10 mapq2 mapq of the second mate

I initially used --walks-policy mask, and later followed the recommendations from pairtools,
specifically informing that longer reads (> 150𝑏𝑝) might have a significant proportion of reads that
contain complex walks. With this in mind and as the average read-length of our data is 300 bp, I
decided to re-parse the alignments into a new set of pairs, and equally apply the recommended
filter (next section). As both results are saved, we can compare the two approaches.

Filter and deduplicate pairs Pairtools comes with a de-duplication function, dedup, to detect PCR
duplication artefacts. At this point I removed all reads that mapped to an unplaced scaffold. Even
though rhemac10 is less fragmented than rhemac8 , rheMac10 still contains more than 2,500 unplaced
scaffolds, which are all uninformative when calculating the chromatin compartments as is the goal
of this analysis. Therefore, we simply only include the list of conventional chromosomes (1..22,
X, Y) when doing the deduplication. Initially, the default values were used to remove duplicates,
where pairs with both sides mapped within 3 base pairs from each other are considered duplicates.
cooler recommend to store the most comprehensive and unfiltered list of pairs, and then applying
a filter it on the fly by piping from pairtools select. The first run that was parsed with mask was
not filtered for mapping quality. After reparsing the alignments and applying the same analysis,
we compare the two pipelines. A quality control report is generated by pairtools dedup as well,
and the reports are merged and visualized with MultiQC (Ewels et al. 2016) for each cell type.

Create interaction matrices (coolers) The final part of the GWF workflow takes .pairs as input
and outputs a .cool file (a cooler). Initially, I read directly from the newly generated deduplicated
pairs without additional filtering, but the official recommendation is to filter out everything below
𝑚𝑎𝑝𝑞 = 30 by piping the pairs through pairtools select "(mapq1>=30) and (mapq2>=30)" to
cooler cload pairs. I re-parsed the alignments and created new coolers, including only the Hi-C
contacts where 𝑚𝑎𝑝𝑞 ≤ 30, following the current recommendations from Open2C.

Pooling samples (Merging coolers) The samples are grouped into replicates with a unique
BioSample ID, and I chose to pool all the interaction matrices for each cell type. Even though it is
slightly unclear how their replicates are defined, Wang et al. (2019) determine compartments to be
highly reproducible between replicates, and they are pooling the replicates as well.

cooler merge was used to merge all samples in each cell-type directory to just one interaction
matrix for each cell type. The function merges matrices of the same dimensions by simply adding
the interaction frequencies of each genomic position together, resulting in less empty or low-count
bins.
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Create multi-resolution coolers (zoomify) A feature of working inside the ecosystem of Open2C
is that it natively provides support for storing sparse interaction matrices in multiple resolutions
in the same file by adding HDF5-groups to the (multires-)cooler. We can then efficiently store
resolutions (i.e., different bin sizes) that is multiples of the smallest bin size. We chose to use
10kb, 50kb, 100kb, and 500kb bins, and the resolutions are made by recursively binning the base
resolution. Abdennur and Mirny (2020) call this process zoomifying, and cooler zoomify does
the job (it recursively calls cooler coarsen to merge bins).

Matrix balancing (Iterative correction) Finally, we balance (or correct) the matrices using the
cooler CLI. We use cooler balance with the default options which iteratively balances the matrix
(Iterative Correction).

We balance the matrices on each resolution, and thus it cannot be done prior to zoomifying.
Abdennur and Mirny (2020) state that the balancing weights are resolution-specific and will no
longer retain its biological meaning when binned with other weights. Therefore, we apply cooler
balance to each resolution separately. cooler balance will create a new column in the bins group
of each cooler, weight, which can then be included or not in the downstream analysis. This means
we will have access to both the balanced and the unbalanced matrix.

The default mode uses genome-wide data to calculate the weights for each bin. It would maybe
be more suitable to calculate the weights for cis contacts only, and that is possible through the
--cis-only flag, and that can be added to another column, so that we can compare the difference
between the two methods easily. However, when adding the option, the process seemed to stall
and had to be terminated manually, and it was not investigated further.

Eigendecomposition The eigendecomposition of a Hi-C interaction matrix is performed in
multiple steps. As value of the eigenvector is only significant up to a sign, it is convention to use GC
content as a phasing track to orient the vector. E1 is defined to be positively correlated with GC
content, meaning a positive E1 value signifies an active chromatin state, which we denote a A-type
compartment (or simply A-compartment). We performed eigendecomposition of two resolutions,
100 kbp and 500 kbp. Wang et al. (2019) briefly describes their method to calculate the eigenvectors
as a sliding window approach on the observed/expected matrix in 100 kb resolution summing over
400 kb bins with 100 kb step size, a method I was not able to replicate in the Open2C ecosystem. I
decided to mimic this by smoothing the 100 kb E1 values by summing to 500 kb bins in steps of 100
kb, yielding a comparable resolution which I denote ‘pseudo-500 kb’ resolution (ps500kb).

First, we calculate the GC content of each bin of the reference genome, rheMac10, which is binned to
the resolution of the Hi-C matrix we are handling. It is done with bioframe.frac_gc (Open2C).
To calculate the E1 compartments, we use only within-chromosome contacts (cis), as we are
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not interested in the genome-wide contacts. cooltools.eigs_cis will decorrelate the contact-
frequency by distance before performing the eigendecomposition. eigs_cis needs a viewframe
(view) to calculate E1 values, the simplest view being the full chromosome. However, when there is
more variance between chromosome arms than within arms, the sign of the first eigenvector will be
determined largely by the chromosome arm it sits on, and not by the chromatin compartments. To
mitigate this, we apply a chromosome-arm-partitioned view of the chromosome.

Additionally, to mimic the Local PCA from (Wang et al. 2019), I also defined a view of 10 Mb bins.
Thoughout the project, I will compare results from each of the three views and resolutions, and
they will be referred to as ‘full’, ‘arms’, and ‘10Mb’ views.

Plotting matrices We use matplotlib (Team 2024) and seaborn (Waskom 2021) to plot in the Open2C
framework. Utilizing the Cooler class, we can fetch regions of the matrix without modifying the
file. As my analysis is centered around the X chromosome, it is efficiently handled by simply
fetching ‘chrX’ from the matrix with cooler.Cooler.matrix().fetch('chrX'). Many methods of
the cooler class returns data selectors, which do not retrieve data before it is queried (Abdennur
and Mirny 2020). This means we can create many selectors at once without overflowing memory,
enabling us to plot multiple interaction matrices side-by-side, e.g. the corrected and un-corrected
matrices. This is easily done with the balance parameter of the matrix selector (.matrix()), which
determines if it should apply the balancing weights to the coordinates and defaults to True.

The matrix is retrieved and plotted with matplotlib.pyplot.matshow, which automatically pro-
duces a heatmap image of the matrix. Here, instead of transforming the interaction matrix, the
color scale is log-transformed with matplotlib.colors.LogNorm. Additionally, cooltools comes
with more tools to aid visualization: adative coarsegrain and interpolation, which can be chained.
adaptive_coarsegrain iteratively coarsens an array to the nearest power of two and refines it back
to the original resolution, replacing low-count pixels with NaN-aware averages to ensure no zeros
in the output, unless there are very large regions that exceed the max_levels threshold, such as the
peri-centromeric region.

I implemented a plotting utility, plot_for_quarto in notebook 07_various_plotting.ipynb that
is compatible with the YAML cell-options read by Quarto’s embed shortcode. It will take an arbitrary
number of samples and plot a chromosome (or region) with or without its respective E1 value for
either of the three viewframes which has been created. The input is a (subsetted) pandas DataFrame,
defined from a file search matching a pattern specified to the glob Python module.
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2.4 Genomic Intervals

2.4.1 Full Regions, Edges, and Limits

From the eigenvectors, the A-compartments were extracted in bedgraph-format (['chrom',
'start', 'end']) and compared with ECH90 regions lifted to rheMac10 from human. We
perform visual inspection of the genomic intervals and test whether ECH90 regions are enriched
near the edges of the compartments by defining a 200 kilobase transition-zone centered at each
sign change of E1 (referred to as compartment edge). We compare genomic intervals (or sets) both
visually by plotting the regions, and by a proximity test and bootstrapping the Jaccard index.
Additionally, the compartment limits were invetigated (only 1 flanking base pair) in the same
manner. Additionally, the limits were extracted from the baboon datasets and lifted to rheMac10 for
comparison.

Proximity test Determines whether the non-overlapping segments of the sets are more proximal
than expected by chance. We define the annotation set and the query set, and the distance from
each interval on the query to the most proximal interval on the annotation is used to generate an
index of proximity by the mean distance to nearest interval in the annotation. Then, bootstrapping
(𝑏 = 100000) is performed by randomly placing the query intervals to generate the null distribution,
and finally, the fraction of the null as extreme or more extreme as our observed proximity is reported
as the p-value.

Jaccard test Measures the significance of the observed Jaccard index (intersection over union)
between two sets. The index is a measure of similarity (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛/𝑢𝑛𝑖𝑜𝑛) between two sets
(between 0 and 1), which is very sensitive to the size difference between the sets, as even when
comparing a set of intervals to a small subset of itself will yield a very small Jaccard index. When
we use bootstrapping to generate a null distribution (shuffling the intervals of the query), we find
the probability that the two sets (with their respective number and size of intervals), are as similar
or more than what we observe. The ratio is reported as the p-value. However, this approach is still
sensitive to flipping of query/annotation (if the regions are not the same size), as only the query is
bootstrapped.

Multiple testing Considerations were made to avoid multiple testing biases (p-hacking): Per-
forming tests on all combinations of variables (cell type, resolution, viewframe, query) will yield 90
p-values for each test, and we would have to adjust the significance threshold (with 𝛼 = 0.05, we
expect 4 tests passing the threshold by chance). However, I will narrow down the parameter space
based on visualizations and reasoning, leaving fewer combinations to test. I do not find it necessary
to correct the conventional significance threshold, 𝛼 = 0.05.
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3.1 HicExplorer Trials

3.1.1 Quality Control

The separately mapped read-mates were parsed into a .h5 interaction matrix by hicBuildMatrix,
which include a .log file documenting the buikt-in quality control (hereafter, QC). Log files from the
5 samples were merged with hicQC (Figure 3.1). I observe equal fractions of the read-orientation
of read-pairs (Figure 3.1, left, row 5), which is expected for a good Hi-C library. Additionally, it
determines between 40% to 50% of the total reads to be valid Hi-C contacts (Figure 3.1, left, row
1), which is usually only 25%-40% (as described in HiCExplorer docs). Figure 3.1 (left, row 4)
shows, however, unusually high fractions of inter-chromosomal contacts (up to 30%) compared
to intra-chromosomal contacts (also denoted trans and cis contacts, respectively). It is expected
that cis contacts are orders of magnitude more frequent than trans contacts (Bicciato and Ferrari
2022, 2301:236; Lieberman-Aiden et al. 2009), and HiCExplorer states it is usually below 10% for a
high-quality library. The high fraction may be mitigated by enforcing a stricter mapq threshold for a
valid Hi-C pair, as we also observe higher-than expected valid contacts. However, we continue with
the current matrices.

To compare how well these mappings perform, the plotting QC results is an easy way. Therefore, the
reads were mapped with bowtie2 in both end-to-end- and local-mode followed by hiCBuildMatrix,
and the QC from each method was plotted next to each other (Figure 3.1). Interestingly, bowtie2 was
much more computer-intensive in both modes, perhaps because of the --very-sensitive option.
In any case, the QC reveals a major difference in the total number of reads that are determined to
be valid Hi-C contacts by hicBuildMatrix. As expected, mapping with end-to-end-bowtie2 makes
locating Hi-C contacts more difficult than the other methods (Figure 3.1, row 1), finding a very
low amount of mappable, unique pairs passing the quality threshold. In contrast, mapping with
local-bowtie2 performs similarly to bwa in finding mappable, unique, high-quality pairs, but calls only
approximately half the number of valid Hi-C contacts (>20%), resulting in a fraction of valid Hi-C
pairs that hits the expectation from HicExplorer docs (row3). With bwa, the reads were discarded
either due to low mapping quality or non-unique mates, whereas with local-bowtie2, the reads
were almost exclusively filtered out due to low mapping quality. This must be a result of how the
mappers assign mapping quality, and I believe local-bowtie2 looks suspiciously selective in finding
unique but low quality alignments. end-to-end-bowtie almost exclusively filters out read-pairs where
one mate is unmapped, which is expected when the majority of reads are unmapped.
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Figure 3.1: Comparison of HiCExplorer QC plots for all samples using different alignment tools. The rows represent
different QC plots (pairs sequenced, pairs discarded, unmappable/non-unique, distance, and read orientation),
and the columns represent the 3 alignments used (BWA, Bowtie2 end-to-end, Bowtie2 local). Generated by
hicQC.
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3.1.2 Correction

The correction diagnostic tool yielded a similar mad threshold within the range [−3,−2]. Even so, I
followed the HicExplorer recommendation to set the lower threshold to at least -2 and the upper
threshold to 5 in the pre-normalization filter. I argue that with a high number of valid contacts, it is
safer to err on the side of caution and maybe filter out bad data.

(a) SRR6502335 (b) SRR6502336 (c) SRR6502337

(d) SRR6502338 (e) SRR6502339

Figure 3.2: Histograms of the number of counts per bin (bottom x-axis) and the modified z-score (top x-axis) from which
the mad threshold is defined.

The five samples were pooled with hicSumMatrices, and the non-standard contigs (unplaced
scaffolds) were filtered out, and the different resolutions were created (hicMergeMatrixBins).
HiCExplorer also comes with a normalization function prior to correcting the matrix, which should
be applied if different samples should have comparable bin counts. It has no effect when having
only one matrix. Nevertheless, the pooled matrix was normalized and then corrected compared in
Figure 3.3. It is now obvious why we have to correct the matrix. The uncorrected (Figure 3.3a) has
no signal apart from the diagonal. Even though some bins have been filtered out, the expected plaid
pattern of a contact matrix is visible along the diagonal after the correction (Figure 3.3b), leaving
evidence for chromatin structure, especially in the first 50 million bases of the chromosome. There
is a wide region of empty values at the place of the centromere.

3.1.3 Eigenvectors

The PCA performed by hicPCA on the pooled samples at both 50kb and 100kb resolution yielded
the first 3 principal components. For PC1 on both resolutions (Figure 3.4a, Figure 3.4d) we observe
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(a) Normalized matrix chrX (b) Normalized and corrected chrX

Figure 3.3: A comparison of interaction matrices before/after iterative correction (HiCExplorer).

only a single sign change which occurs at around 60 Mbp, the region of the centromere. It means
the PCA has captured more variance between the chromosome arms than within them, making it
uninformative about chromatin compartments. Upon visual inspection, it is clear that neither of
the PC graphs capture the pattern of the interaction matrix by its change of sign. It seems the PCs
capture variance from a bias that varies slowly and predictably along the chromosome. The first PC
that is supposed to capture the compartments very suspiciously changes sign at the region of the
centromere, a classic problem that could be solved by restricting the values from which the PC is
calculated along the chromosome. Unimpressed, I rationalize that the option --extra-track to
provide a gene track or histone coverage should not affect this result much. It should be provided as
a phasing track to orient the eigenvector to positively correlate with gene density or histone marks,
and could possibly muddle the compartments if not included. I followed HiCExplorer pipeline to
plot and explore the matrices. At this point, I stoppped using HiCExplorer, as I assessed that a more
flexible tool was needed.

3.2 Open2c ecosystem

3.2.1 Quality Control

As described, the pairtools module in MultiQC was used to visualize results from pairtools
stats for the two parsing runs, see Figure 3.5. The peak at around 250 bp is a techical artefact and
should not be parsed into valid contacts.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Corrected interaction matrix for chromosome X along with PC1, 2, or 3, respectively. a-c: 50kb resolution, d-f:
100kb resolution. HiCExplorer.
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--walks-policy mask Comparing the multiQC report for each of the cell sources show similar
distributions of unmapped (both sides unmapped), one-sided (one side mapped), two-sided (both sides
mapped), and duplicated (w.r.t. total mapped) reads. The percentage of cis pairs w.r.t. mapped
pairs is around 70% for all samples (Figure 3.5a). The valid pairs also show similar distributions of
pair types divided into 10 categories. The 𝑃(𝑠) curve looks similar for all samples as well, peaking
around 250 bp separation (Figure 3.5c). The QC does not show any information about mapping
quality of the reads. Note that the 𝑃(𝑠) curve arise from pre-filtered pairs, meaning it provides
information about the Hi-C library.

--walks-policy 5unique Parsing alignments with the recommended walks-policy aproximately
halves the percentage of unmapped reads, and one- and two-sided reads as well duplicated reads are
slightly increased. Overall number of unique pairs are increased with more than 20% increase. The
percentage of cis pairs are only decreased by a percentage point at most (Figure 3.5b). Changing the
walks policy does not alter the 𝑃(𝑠) curve, meaning the parameter does not bias the parsing w.r.t.
genomic separation.

3.2.2 Correction

Matrix balancing did not show major improvement in the plaid pattern, as it already showed the
expected pattern. It does, however, filter out bins that are deemed too low-count to be informative,
for example peri-centromeric regions. The matrix was expected to be smoother after balancing
(for chromosome-wide maps), as regions along a chromosome should only vary slowly in contact
frequency with other regions as they are on a continouos molecule. Therefore, sharp contrasts
represent a sudden drop in bin count (Figure 3.6a, raw) and should not be interpreted as devoid of
interaction, but an indication that the data is not sufficient to interpret. It is then better to simply
remove the bins instead of correcting, which will also amplify noise. Even with a high-quality
Hi-C library we expect that all bins do not have the same coverage throughout(Lajoie, Dekker, and
Kaplan 2015), as restriction enzymes do not bind equally to all regions of the genome, and therefore,
some bins will be underrepresented as an artefact of binding/cutting efficieny of the restriction
enzyme used.

We can try to mitigate the white lines of empty bins that now appear in the matrices. The
coarsegrained and interpolated matrix is useful to make a good-looking interaction matrix, but
is not that useful for analysis purposes. It might get easier to visually inspect the matrix, but
it is not clear how well the interpolated matrix reflects the structure of the chromatin, and it is
not transparent which regions are interpolated and which that are not. I find it purposeful for
interpolation on high-resolution (zoomed-in) views (Figure 3.6b) with small empty regions, but
misleading for chromosome-wide maps, where typically the centromere and extremities of the
chromosome have filtered-out bins. Interpolation is further discussed below.
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(a) --walks-policy mask (b) --walks-policy 5unique

(c) --walks-policy mask (d) --walks-policy 5unique

Figure 3.5: Results of pairtools stats run on all samples from the two walks-policies. Left (a+c): mask; right (b+d):
5unique. Generated by MultiQC (Ewels et al. 2016). Note: X-axes are not shared in the ‘Genereal Statistics’ plot.
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The regions that are coarsegrained are small zero- or low-count bins which are averaged, effectively
reducing the resolution of those regions until the count is sufficient. They get more frequent
the longer genomic distance (the further we travel from the diagonal), and effectively enables us
to get some intuition about the interactions. The coarsegrain, however, does not interpolate the
NaNs created when filtering out whole bins in the balancing step (horisontal and vertical lines in
Figure 3.6a and Figure 3.6b; middle). This is done in a subsequent step by linearly interpolating the
NaNs. Examining the interpolated matrix on full chrX (Figure 3.6a; right) gives the impression that
the pericentromeric (at ~60 Mbp) region harbours a very strong compartment, but that is clearly an
artefact of the interpolation on the very large empty region of the centromere, where the diagonal
is somehow extended in a square. On the thinner lines, the interpolation seem to be more smooth,
and barely noticable on the diagonal.

(a) Full RS matrix at 500kb resolution

(b) Subset RS matrix at 50kb resolution

Figure 3.6: Raw, balanced, and interpolated chrX interaction matrix in a) 500kb resolution (full chrX) or b) 50kb resolution
(chrX:30Mb-39Mb). The interpolation is done to make the matrix more visually appealing, but it is not
necessary for the analysis.

NaN histograms As expected, most of the low quality bins are located on the edges of the
chromosome arms, especially the region around the centromere (Warren et al. 2020), as they contain
many repetitive sequences. The low-quality bins are filtered out by the balancing algorithm, those
bins are NaN in the Hi-C matrix. The median position of the NaN values (Figure 3.7) ranges between
58 and 63.5, which is within the estimate of the centromeric region of rhemac10 (the UCSC browser
has a continuously unannotated region at chrX:57,500,000-60,200,000). The fact that the medians lie
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within the centromeric region on all cell sources shows both that the majority of the bad bins are in
the (peri)centromeric region and there are approximately equally many on each side.

Figure 3.7: Histogram of NaN values in the E1 eigenvector for each cell type. Median position is marked with a red
dashed line.

3.2.3 Compartments (Eigenvectors)

The three viewframes (Full, Arms, 10Mb) used for the calculation of the eigenvectors captured
different variability in the data (Figure 3.8), and as expected, the inferred compartments (colored red
on the E1 tracks) are more abundant and smaller with smaller viewframes. To determine how well
each of the E1 tracks capture the pattern in the interaction matrix, we can overlay the matrix with
the E1 sign-change and visually determine if the squares reflect the E1 sign change (Figure 3.8).

(a) 100kb resolution (b) 500kb resolution

Figure 3.8: E1 eigenvector values for merged round spermatid samples at a) 100kb or b) 500kb resolution, as well as the
interaction matrix. E1 was restricted to either Full-chromosome (top), Chromosome-arms (middle), or 10Mb
windows (bottom)

I decide that without more finescaled knowledge than the position of the centromeres, the arbitrary
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size of the 10 Mb windowed E1 can not fully be justified. That is, we could arbitrarily calculate
any windowed E1 track. Also, Wang et al. (2019) concludes only for pachytene spermatocyte to
show local interactions in the 10Mb viewframe (what they refer to as refined A/B-compartments), and
all the other stages of spermatogenesis were consistent with the conventional A/B compartments.
The reasonable thing to do is therefore to continue the analysis, focusing on the arms-restricted
eigendecomposition. Nevertheless, we also keep refined compartments in the analysis.

(a) 5unique: chrX:start-end (b) mask: chrX:start-end

(c) 5unique: chrX:70Mb-78Mb (d) mask: chrX:70Mb-78Mb

Figure 3.9: Round Spermatid (RS) at 100kb, comparing the impact of parsing parameters

Additionally, as I created coolers with two different sets of parsing parameters we will compare
the resulting matrices and their compartments (Figure 3.9). As expected, we observe more empty
bins in the Hi-C matrix when comparing the initial run (mask) to the recommended parameters
(5unique), but otherwise, the interaction pattern is indestinguishable. The effect on the E1 is
more noticable, where the absolute magnitude of the E1 values is generally smaller. There is,
however, a small region that changes sign (from A to B) on the 10Mb-windowed (‘refined’) E1 track
(Figure 3.9;c+d). This region is surrounded by added empty bins, which could mean that too many
low quality pairs in mask were introducing bias and swapped the sign of E1. It is supported by
the fact that the sign change only occured in refined E1, and that the sign after filtering weak pairs
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(𝑚𝑎𝑝𝑞 < 30) is consistent with the arms view. It supports my previous postulate that it is better to
use a viewframe with explicit molecular meaning than one of an arbitrary window size. That said,
the mapq threshold should really be determined taking both coverage and resolution into account.
For our purposes, and with the arms view, the mapping- and parsing parameters do not seem to be
too sensitive.

To emphasize the findings, the sets of A-compartments were compared between the two parsing
runs, showing almost identical compartment calls. Additionally, the set difference was 8 bins
between PE and recPE for round spermatid 100kb and 5 bins for fibroblast for arms viewframe
(Figure 3.10; a+b, respectively). We observe a high number of differences around 76Mb for the
refined compartments (10Mb) of round spermatid, which is consistent with the sign-flip of E1
values discussed earlier. Anything else would be surprising, as it is the same data, but visualized in
a different way.

(a) RS: arms (b) Fib: arms

(c) RS: 10Mb (d) Fib: 10Mb

Figure 3.10: Round Spermatid (RS) and Fibroblast (Fb) at 100kb, comparing the impact of parsing parameters on
A-compartment calling at different viewframes; arms, 10Mb. PE: initial parse (masking complex walks);
recPE: recommended parse (reporting the 5’most unique alignment of a complex walk).

The observed difference between the sets can for our data be attributed to chance, but we cannot
draw general conclusions about the parameters in general. I argue that the quality and size of the
Hi-C library will influence sensitive to parsing parameters. In that case, the most flexible approach
is still to follow the recommendations from cooler to report more pairs as valid contacts, and then
create coolers with different mapq filters if issues are encountered.

3.3 Comparing Genomic Intervals

The comparison of genomic intervals was modified along the way, as we gained more knowledge
and caught mistakes in the original implementation (especially of the proxomity test). Here, I only
report the results of the final version of the software, but the modifications and implications hereof
are discussed in Section 4.
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3.3.1 Compartment Edges (transition zones)

We compare how the ECH90 regions fit when queried on top of the A-compartments and equivalently
for the edges, for fibroblasts and round spermatids at 100kb resolution. When queried against
the edges instead, the the total set size is reduced to less than 50%. Interestingly, some of the
intersections between A-compartments and ECH90 remain, and new ones appear as we move to
the outside edge of the compartment (Figure 3.11). This indicates that most, but not all, of the
intersection between ECH90 regions and the A-compartments are within 100kb of the compartment
edge, and additional overlap is gained if we define a transition zone on the outside of the edge as
well. To visualize this (outside) edge enrichment, we find the set difference of the ECH-intersection
to compartments and edges, respectively (Figure 3.12), thus removing all the ‘inside’ edges. We
observe that in almost all of the of the regions of 𝐸𝐶𝐻 ∩ 𝐶𝑜𝑚𝑝 are accompanied by an edge also
intersecting ECH (𝐸𝐶𝐻 ∩ 𝐸𝑑𝑔𝑒), localized where the Diff track aligns (within 100kb) with both
𝐶𝑜𝑚𝑝𝐼𝑛𝑡 and 𝐸𝑑𝑔𝑒𝐼𝑛𝑡.

(a) Fibroblast A-compartments (b) Round Spermatid A-compartments

(c) Fibroblast edges (d) Round Spermatid edges

Figure 3.11: Visual representation of the genomic intervals of ECH90, A-compartments (a+b), edges (c+d), and their
intersections. Shown fibroblast (a+c) and round spermatid (b+d) at 100kb resolution and arms viewframe.

(a) Round Spermatid (b) Fibroblast

Figure 3.12: Visual representation of the enrichment of edges in the intersection of ECH90 and A-compartments. Shown
round spermatid (a) and fibroblast (b) at 100kb resolution and arms viewframe. Note that the edge-regions
are too small to be distinguished visually from the compartment on the graph, making it look like they
overlap, even though the difference is reported.

I apply both the proximity and Jaccard test to see how well the observations could be explained by
chance. For completeness, the tests are performed for all cell types, but only use 100kb resolution
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and arms viewframe. We observe that both fibroblast and round spermatids have significant overlap
(Jaccard p-values 0.012 and 0.010, respectively), meaning the edge zone have more intersection with
the ECH regions than expected by chance. None of the samples passed the proximity test, meaning
the non-overlapping segments were no more proximal than expected by chance. A significant
proximity test (when performed on the edges) might provide information about the potential
of expanding or moving the transition window. That is, if the non-overlapping regions are very
proximal, a larger (or shifted) window to only capture the 200kb region outside of the edge might be
favourable. With the very small amount of observed proximity (high p-values), we might consider
shrinking the windows.

3.3.2 Testing against baboon regions under strong selection

The data for this analysis was provided by Kasper Munch in bed-like format, mapped to panu_3.0
(PapAnu4) assembly. The intervals define genomic regions in a hybrid/migrating population of
baboon where strong negative selection acts against minor parent ancestry (Sørensen et al. 2023).
The segments had to be lifted to rheMac10 coordinates to be able to correlate the two sets of intervals.
The original UCSC-liftOver (Hinrichs 2006) is very strict and does not try to conserve segments in
favor of accuracy e.g. inversions or small indels, which results in highly fragmented regions when
lifted to another assembly, if the segments are not continouos on the new assembly. For our analysis,
it is not the exact genomic position or order of sub-genic regions that are important, but rather, the
start and end coordinates of each segment are quantified. To favor preservation of segments, we
use segment_liftover (Gao, Huang, and Baudis 2018), resulting in much more similar segments to the
original (Figure 3.13). As no chain file from panu_3.0 to Mmul_10 was available, we used panu_2.0
as intermediate.

(a) high-olive

(b) high-hama

Figure 3.13: Comparison of a) high-olive and b) high-hama intervals between Panu_3.0, segment_liftover, or UCSC
liftOver coordinates when lifting from PapAnu4–>PapAnu3–>rheMac10.

Initially, the compartment edges of round spermatid at 100kb resolution (RS100) were plotted
against the lifted coordinates from the baboon hybrid population, where either all the sampled
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individuals have olive (P. anubis) ancestry or 95% of the sampled individuals have hamadryas
(P. hamadryas ancestry. Their respective intersections were plotted underneath. We expect less
intersection for hamadryas than for anubis as the total set size is much smaller. The compartment
edges and Papio anubis-derived regions(Figure 3.14; b) seem to be highly enriched in the first 25 Mbp,
and thus it has a high degree of intersection with the compartment edges. Interestingly, the ECH90
set is nearly empty in that region, which could be useful for determining the mechanism for selecting
against the P.hamadryas ancestral allele in the hybrid baboon population. The P.hamadryas-derived
regions seem intersect the compartment edges more centered on the chromosome (Figure 3.14;
a). The proximity test initially ruled out that the non-intersecting parts of the respective regions
were this proximal by chance. However, after updating the method to exclude whole segments
that partially overlaps (instead of keeping their non-overlapping parts), there was no statistical
significance. Additionally, the Jaccard test revealed that the intersection between the RS100 and
both Hi-P.hama and Hi-P.anu can be explained by chance alone with no p-values below 0.05.

(a) P. hamadryas + arms E1 (b) P. anubis + arms E1

(c) P. hamadryas + 10Mb E1 (d) P. anubis + 10Mb E1

Figure 3.14: Comparing the A-compartment edges of round spermatid (RS) with regions in baboons from hybrid
population where a) 95% of sampled individuals have Papio hamadryas ancestry or b) 100% of the samples have
Papio anubis ancestry. The regions are extracted and lifted from PapAnu4 to rhemac10 using segment_liftover.

3.3.3 Testing limits

We then abandoned the idea of a 200kb transition zone between the compartments. It was introduced
as a less stringent edge, allowing the intersection of the selected regions to be within a defined
threshold. We hoped a weaker threshold could allow for more variance, but it turned out to be
the opposite (Table 3.1). After defining the compartment limits (_edge_1bp), we perform tests
on combinations of all five sources (fibroblast, spermatogonia, pachytene spermatocyte, round
spermatid, sperm) and 2 viewframes (arms, 10Mb) and 5 queries. The queries were modified as
such; the full ECH was used unmodified for the tests as it was already shown to overlap (Jaccard)
fibroblast and round spermatid. hama and olive limits were used separately and as a concatenated
set (hamaolive_edge_1pb), to increase the effect size, especially as the hama set is quite small
compared to the rest of the sets. By their definition, olive and hama do not overlap, and can safely be
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concatenated (see Figure 1.1 for confirmation). Now, we observe significant p-values across all cell
types.

Table 3.1: Test results from proximity and Jaccard, comparing ECH (full regions) or baboon 1bp limits with compartment
1bp limits from all cell types. Significant p-values across tissue types. All insignificant p-values are filtered
out. Fb: Fibroblast, Spa: Spermatogonia, Pac: Pachytene Spermatocyte, RS: Round Spermatid, Sperm: Sperm

Table 3.1

View Query Test Fb Spa Pac RS Sperm

10Mb ECH90 jaccard 0.021460 0.006110 - - 0.047500
10Mb olive_1bp proximity - - - - 0.016140
10Mb olivehama_1bp proximity - 0.018790 0.012300 - 0.001280
arms ECH90 jaccard 0.016560 0.006120 0.005340 0.027690 -
arms olivehama_1bp proximity - - 0.035640 - -

Reassuringly, both fibroblast and round spermatid still have significant Jaccard p-values for the
arms viewframe although the p-values have increased (to 0.017 and 0.028, respectively). Now,
all tissues except sperm show significant overlap with ECH regions, especially spermatogonia
and pachytene spermatocytes with p-values 0.006 and 0.005, respectively. Only fibroblast and
spermatogonia significantly overlap the ECH region for both viewframes, indicating that their
predicted compartments shift only minimally compared to the pachytene spermatocyte and round
spermatid when narrowing the viewframe. Pachytene spermatocyte and round spermatid loose
their significance when narrowing the viewframe, meaning their compartments are highly varied
between the two views, and the same conclusion can be drawn about sperm, as it gains significance
when the viewframe is narrowed. Interestingly, only sperm overlaps the baboon regions with
olive ancestry, and no tissue overlaps with hamadryas ancestry. Conversely, when concatenating
the olive and hamadryas sets to capture all selection in baboons, both spermatogonia, pachytene
spermatocyte, and sperm are significantly proximal. Here, sperm, which is not proximal in the
arms viewframe, has the lowest p-value (𝑝 = 0.001).
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4 Discussion

4.1 On Reproducibility

As an extensive reproducibility infrastructere became a major part of the project, I have to reflect
upon the advantages it has, but also the consequences it inevitably brings along. First, reproducibility
is the basis of scientific progression, and idealisticly it should come before the discovery itself. But
let us not pretend that reproducibility is favored above hypothesis testing to be the driving forces
of progression, and let us not pretend that it has a singular definition. There are many layers to
reproducibility, and we do, of course, not need to host a website or to construct a single-command
pipeline for reproducing the analysis to call a study reproducible. Additionally, the option only exist
for analyses that are strictly computational. It is, however, very useful and can greatly improve
downstream efficiency, and I find it important to at least explore the available options. If such a
pipeline had existed, I would not have had to spend weeks to update the results of Wang et al.
(2019) to reflect a more recent reference genome. With such a pipeline, it is now easy to extend the
analysis to include more samples and other species. Additionally, if they had made the coordinates
of the compartments available, I could probably have used them directly and start by comparing
genomic intervals. Instead, this became a study more of Hi-C data analysis than comparing genomic
intervals.

At the time of writing, the repository is almost there w.r.t. reproducibility, but still not quite. It
only reproduces the final analysis done with bwa, pairtools, cooler, cooltools, and not the preliminary
analyses comparing aligners and using HicExplorer. This is the intention, as most use-cases would
not need the results of a preliminary methodological comparison. However, the workflows are
saved under scripts/ and can be run from there, or they can be added to the main workflow.py
as separate targets. A small amount of refactoring of the directory structure is required as well,
because some files are fetched from a parent folder to the project directory. Additionally, the main
workflow is intensive in I/O and could be heavily optimized by piping between commands instead
of writing the outputs to file and reading the files from the next command. However, that would
make it harder to debug, as no checkpoints are saved. It would not be as efficient use of resources,
which are requested on target level, as the analysis would have to run as a single target. The
different steps of the pipeline are either CPU-bound or RAM-bound, but rarely both, and it would
take some experimenting to find the optimal compromise. Additionally, the computational steps
between a raw .cool file and a balanced, multi-resolution .mcool are performed in a notebook, and
the steps should be moved to the workflow. Then, a final target should be added to the workflow,
executing all the notebooks (they are named in order), to generate the figures and tables that are
used in this manuscript and on the main project pages.
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There is a major downside when trying to conform to an idealistic framework—the generation of
figures and tables. Throughout this project, I have adhered to the rule that none of the figures
and tables should be created or even annotated manually. It is very time-consuming to create
production-quality figures that needs no further enhancements before embedding into a manuscript,
and even more so do create tables that are both compatible with HTML and PDF. Here, Quarto
inherits the limitations of Pandoc (which it uses internally to convert Markdown to its output
formats), and it does not work well with complex grouped tables generated in Python to translate
into LaTeX (which again is an idealistic typesetting system). As Quarto is a relatively new framework
(first release 2022-07-28 Quarto Team (2022)), there are contiously released updates to fix bugs.
Therefore, one can spend hours on a workaround for a feature, which could be included in week’s
release.

I believe it is an important exercise to force oneself to be cautious about design choices and explore
the advantages and limitations of the tools we have available to communicate what we want to
communicate.

4.2 On Methodology

HiCExplorer is a comprehensive software that consist of an extensive list of ready-made command
line functions that calls Python source code. It is modular, except for the parsing of the aligned
reads into a raw Hi-C matrix. The documentation provide an extensive list of options to pass to the
commands. Nevertheless, they do not provide a Python API (or at least not any documentation
thereof). The modules can be imported into a Python-session with standard import syntax, but
there are no guiding help pages. Looking through source code revealed that one would have to do
something like

1 from hicexplorer.hicPlotMatrix import plotHeatmap
2 from hicmatrix import HiCMatrix
3 plotHeatmap(HiCMatrix(matrix_file)) # and test the required parameters

to use the plotting function directly within a notebook. However, it would have to modified to
stop saving the plots as files instead of sending them to the display, and it would still require
reading from files. Clearly, it is not meant to be used directly within Python, as additionally, the
CLI function simply is a wrapper for the main()-function of the module:

1 #!path/to/python
2 # -*- coding: utf-8 -*-
3 from hicexplorer.hicPlotMatrix import main
4 if __name__ == "__main__":
5 main()
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HiCExplorer is, however, also integrated into Galaxy (The Galaxy Community et al. 2024; Wolff et
al. 2020, 2018), a web-based platform that has computationally demanding softwares executable
through their servers. Here, one can make a drag-and-drop workflow with HicExplorer’s commands,
get integrated visualizations, among other cool stuff. Although it was not suitable for this project,
they should be given credit for such an extensive integration. Additionally, following a Galaxy-
walkthrough would have given me a better intuition of the pipeline they recommend, and faster as
well.

The Open2C Ecosystem consists of three major modules—pairtools, cooler, and cooltools. They
all conform to the same standards; they are highly modular, and highly flexible and extensively
documented. They have an interactive cooler-demo running on Jupyter notebooks on a server,
which is easily adaptable to other data. They include both a command-line interface and a (well-
documented) Python API, where a Cooler class efficiently handles the Hi-C matrix. They provide
tutorials on all 6 of their intended use cases—Visualization, Contacts vs Distance, Compartments
and Saddleplots, Insulation and Boundaries, Dots and Focal Enrichment, and Pileups and Average
Features—of which we only use visualization and compartments. The software is fully compatible
with Pandas and Matplotlib packages, making the analysis highly flexible.

The drawback with having a very flexible tool is that the conventions are unclear. The latest
methodological review is from 2015 (Lajoie, Dekker, and Kaplan 2015), and many things have
progressed since then—a previously mentioned example being the update to bwa so mapping
reads seperately is no longer necessary. Additionally, a Springer Protocol about Hi-C Data analysis
(Bicciato and Ferrari 2022) is more recently published, but I find that it more so establishes a range
of possibilities than a practical guideline.

4.3 On Results

The differences in the results the two tools produced were crucial, as I could not reproduce the
eigenvector compartments reported in Wang et al. (2019) with HiCExplorer, as HiCExplorer has no
(apparent) way of restricting the viewframe of the eigendecomposition. It resulted in highly biased
PC-tracks that only resembled 2 or 3 compartments (Figure 3.4). While it is a strong limitation to
the tool (either documentation-wise, or capability-wise), the Hi-C matrices were constructed in only
a few steps and passed their the provided quality control, even though the mapping parameters
were only explored superficially. The only notable deviance in quality control was a high fraction
of valid contacts, but this may be relieved by increasing the default 𝑚𝑎𝑝𝑞 threshold from 15 to
30 as the noted convention in Lajoie, Dekker, and Kaplan (2015). The contact matrices generated
from HiCExplorer improved when correcting, but still, the visible pattern closely delimited by
low-count bins. This undesirable feature may be mitigated by passing a stricter filtering threshold
to hicCorrectMatrix.
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The eigenvectors resulting from Open2C line up very well with the ones from Wang et al. (2019).
Here, some of the maps were lined up and overlayed manually in a sketching software, as no
coordinates were available from the authors. In hindsight, it could have been informative to request
the analyzed datat from the authors. The predicted compartments from cooler qualitatively aligned
very well with the ones predicted by Wang et al. (2019) if their track was split in the region of the
centromere. I confidently rationalize that the reason I have to split in the centromeric region is the
newly, more accurate reference genome. As it rheMac10 has closed a high amount of gaps since
last reference (most of which are expected around the centromere), we expect more sequences to
align in that region, resulting in a longer genome as well. This could readily have been tested by
lifting the newly calculated coordinates to rheMac2, but I decided it was not worth the effort for
a slightly more accurate (yet still qualitative) validation. Additionally, I wanted to shift the focus
from reproducing their results to re-running their analysis on rheMac10. With similar reasoning, only a
small effort was put into performing their exact eigendecomposition of the Hi-C matrices before
abandoning, as it was deemed unnecessary to force a protocol that was not meant for the tool I was
using.

Comparing the two separate runs for parsing parameters revealed only minor differences in parsing
statistics, the most notable being the fraction of unmapped pairs, which was expected—a higher
amount for mask than for 5unique. The lower amount of unmapped reads also seem to trigger a
higher amount of duplicates. As a result, the two runs end up with the same distribution of cis pairs.
Supporting the claim that the parsing parameters made no significant difference, the compartments
called for each run were qualitatively compared (Figure 3.10), revealing only minor differences

The brief exploration of matrix plotting with Open2C shows how different measures that can be
taken to improve visibility in some regions, but end up misrepresenting the data. Especially, for
large genomic regions of missing values, the interpolation is very unreliable (Figure 3.6a, right),
where it might be interpreted that very high-frequency interactions occur at the centromeric region.
Additionally, as it does not add to the analysis, but only is for visualization, it looses transparency
by hiding empty bins. The problem is not as evident in smaller regions (Figure 3.6b), where mostly
single empty bins are interpolated.

4.3.1 Narrowing the parameter space for testing

To mitigate the effects of multiple testing and reduce my own biases, I try to reason about the
different parameters used to pick a subset of combinations to test for significant overlap (Jaccard test)
or proximity. Comparing the corrected matrices with the calculated E1 values is initally a subjective
task. I find that the predicted compartments are highly similar between arms and 10Mb views at
both 100kb and 500kb resolutions, but with the full view of the chromosome, fewer compartments
are determined. Bear in mind that none of the compartments can be said to be wrong, they all just
capture the variance on different scales. Remembering that the size of the regions under selection
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were spanning 6 megabases at most informs the decision to discard the full genomic view, which is
also supported by the litterature (Lajoie, Dekker, and Kaplan 2015), recommending partitioning the
chromosome into its arms if the first eigenvector only captures the arms.

Similarly, the choice of resolution should be made cautiously. Here, the resolution of the matrix
is the same resolution as the resolution of the eigenvector. Therefore, a resolution can be chosen
to reflect the genomic scale that we want to investigate, and the minimum resolution required to
test if the compartments overlap with regions under selection. Although some of these regions are
exceptionally large, the shortest segment is just below 100 kb. Thus, the 100 kb resolution is deemed
sufficient to capture compartments that are within the range of the regions under selection.

However, it is important to acknowledge the trade-offs involved in selecting a resolution. Higher
resolutions (e.g., 50 kb or 10 kb) can provide finer detail and may help identify sub-compartmental
structures or smaller features of chromatin organization. As Wang et al. (2019) used 40 kb matrices
for TAD calling, resolution should not be an issue for 50 kb matrices in this context. Although this
study did not experiment with higher resolutions than 100 kb, it is plausible that 50 kb resolution
could better capture the structural variance. The sequencing depth and coverage of the library
appear sufficient to support such analyses, further justifying the exploration of higher resolutions.
On the other hand, lower resolutions (e.g., 500 kb or 1 Mb) are more robust for sparse datasets but
may oversimplify chromatin structure and fail to resolve smaller regions under selection. The choice
of 100 kb strikes a balance between these extremes, ensuring that biologically relevant features of
both the compartments and the regions under selection can be detected while minimizing the risk
of false positives due to noise.

It is thus apparent that further analysis at higher resolutions, such as 50 kb, could provide additional
insights into the structural variance of the regions under selection. This study largely avoids
performing in-depth quality control of the Hi-C library and the resulting interaction matrices,
instead relying on qualitative evaluation. However, this approach is justified as I use the same
resolution as Wang et al. (2019), whose work includes comprehensive quality control measures such
as coverage profiles along the chromosomes, 𝑃(𝑠) curves, and compartment segregation strength.

4.3.2 Correlating genomic regions

The extracted compartments and their 200 kb edge regions were qualitatively compared for overlap
with the ECH region (Figure 3.11). For fibroblast (Fb) and round spermatid (RS), I observe promising
overlap with ECH90. Additionally, visualization of the difference in overlaps (“DiffInt”) between
(ECH, full compartments) and (ECH, edges) confirmed that the ‘outside’ edge captured additional
overlap (see Figure 3.12). It would have been informative to compare the intersection of the same
overlaps (“IntInt”) to determine whether the overlap occurs more frequently on the inside edge
than the outside edge.
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The Jaccard test confirmed significant ECH overlap with Fb and RS, with 𝑝 = 0.012 and 𝑝 = 0.010,
respectively. In contrast, the proximity test showed no significant results, which is unsurprising
given the design of the test. Specifically, when calculating the proximity index between a query
and an annotation (query and annot, respectively), overlapping segments are masked from query
before calculating the mean distance to the nearest non-overlapping segments. This means that
substantial intersection, as confirmed by the Jaccard test, leads to many segments being removed in
the proximity test. This design choice—–removing entire overlapping segments rather than just
the overlapping bases—–creates a clearer separation between the two test statistics. Without this
distinction, the proximity test could capture some of the variance inherent to the Jaccard statistic,
making it harder to isolate proximal, non-overlapping segments.

The significant overlap between ECH regions, Fb, and RS at arms view is reproduced when testing at
the compartment 1bp limits instead of the 200kb edges, although the significance is weakened a bit.
The incresed p-value indicates that the full regions are important for for relationship. Surprisingly,
the limits of both spermatogonia and pachytene spermatocyte are significantly overlapping the
ECH regions, more so than both fibroblast and round spermatid, supporting the findings from
Wang et al. (2019) that chromatin undergoes remodelling through spermatogenesis.

The visualization of the overlap between baboon regions and round spermatid showed notable
amounts of intersection (Figure 3.14), but both significant overlap and proximity was rejected by
the tests. Conversely, the tests performed on the 1bp limits of baboon regions against the 1bp
limits of A/B compartments revealed a significant proximity between olive and spermatozoa.
Additionally, significant proximity was observed between spermatogonia, pachytene spermatocyte
by defining baboon regions under selection as a single set, olivehama, and here the significance was
strengthened an order of magnitude for spermatozoa. This indicate that the effect size of the hama
regions is too small for statistical inference, but also that the two sets of genomic intervals can be
viewed as a single set, possibly indicating that similar forces have shaped the genomic landscape.

Notably, three out of five cell types both overlap the ECH regions and are proximal to the baboon
limits—spermatogonia and spermatozoa in the 10Mb viewframe, and pachytene spermatocyte
in the arms viewframe, indicating an indirect relationship through chromatin architecture. As
neither proximity nor overlap is observed between the baboon regions and ECH, this observation
could indicate that some structural features of the chromosome are aiding in reducing diversity.
These findings propose an intricate relationship between chromatin architecture and evolutionary
pressures. The intersection and proximity between regions under strong selection and chromatin
compartments on the X chromosome of primates, along with their location on the X chromosome,
suggest that structural genomic features influence patterns of diversity and selection. While these
results are promising, further testing of the compartments is needed—both at higher resolutions
and in other primates—to refine our understanding of these dynamics.

Notably, Skov et al. (2023) describe a compelling scenario where meiotic drive could explain the
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reduced diversity on ECH regions, and these structural features might also play a role in facilitating
or constraining mechanisms like gene drive, which can significantly alter allele frequencies across
generations by bypassing classical Mendelian inheritance. However, caution is warranted when
inferring the role of gene drive, as it remains a contentious concept among biologists.

4.3.3 Gene Drive, Selfishness and its Effect on Selection

Gene drive occur when a particular collection of genes is propagated through a population
by increasing the probability of transmitting genes to the offspring from random (Mendelian)
inheritance, resulting in a biased gene transmission against its alternative (referred to as transmission
advantage). Two categories of gene drivers exist (Bravo Núñez, Nuckolls, and Zanders 2018); class
one drivers affect chromosome segregation in meiosis, and killer meiotic drivers will sabotage meiotic
product that have not inherited the driving allele (Bravo Núñez, Nuckolls, and Zanders 2018).
This happens regardless of the fitness effects of the developed organism, and is there often a
factor offsetting classical selection. Even though the implications of such systems are potentially
detrimental, they are notoriously difficult to detect. A circumstance contributing to the difficulty
is that most genetic experiments are done in homozygotes. Bravo Núñez, Nuckolls, and Zanders
(2018) state that the general choice of experimental system may have biased our understanding of
sexual reproduction. A key point is; meiotic drivers can only be observed in heterozygotes, where a
genetic driver has a competitor.

If an autosomal driver reaches fixation, it no longer has a target to act against, and consequently the
driving phenotype will not be observed (Bravo Núñez, Nuckolls, and Zanders 2018). Over time, as
there is neither selfish nor selective pressure to maintain the driving mechanism of a fixed driver,
the mechanism will decay as it accumulates inactivating mutations. As a result, genetic drivers
are said to be transient (Bravo Núñez, Nuckolls, and Zanders 2018) on an evolutionary timescale,
unless it is linked to another positively selected allele (Jaenike 2001). Interestingly, gene drive is
much more well-documented on sex chromosomes than for autosomes. Possibly because the sex
chromosome meiotic drive inherently causes a skewed sex ratio, more notably raising a flag for
further analysis. Or, because X and Y do not recombine, allowing for killer-supressor gene pairs to
stay on separate chromosomes. The consequences of sex chromosome drive and skewed sex ratio
can be widespread. A fully driving gene on X can to lead to the extinction of the population that
fixes the allele (Jaenike 2001), as only one (fertile) offspring sex will be produced. Therefore, sex
chromosome drivers usually exist in equilibrium with a supressor. When a population becomes
female-biased, autosomal suppressors will be favored with a process termed Fisher’s sex ratio selection
(Lindholm et al. 2016.), as the individuals that produce offspring of the minor-sex have higher
fitness.

A driving element on X may target a region on Y, mitigating the risk of self-destruction and
increasing its frequency at the same time. However, as it induces a skewed sex-ratio by limiting the
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number of functioning Y-bearing spermatozoa, the selection on Y to counter this effect is strong,
engaging an evolutionary arms race between driving allele and its supressor, potentially explaining
stable Y chromosome polymorphisms (Jaenike 2001). However, the Y chromosome only exist
in the male population and a supressor on Y has only limited effect on the X chromosome on a
population-scale compared to its autosomal cousins, which consequently often harbour supressors
of X-drive, as they are passed down to more offspring than the Y chromosome. The fight between
a driver and a supressor in their coevolution is linked to the chromosomal architecture, as they
have been shown to be protected by low-recombining regions or chromosomal inversions, and to
be mediating the evolution of karyotype (Lindholm et al. 2016). Thus, the structural features of a
chromosome not only shield genetic drivers but influence the patterns of synteny, which, in turn,
are shaped by both selection and genomic constraints.

The interplay between selfish genetic elements, such as gene drivers, and their suppression through
coevolutionary processes emphasizes the importance of chromosomal architecture in shaping
evolutionary dynamics. This evolutionary “arms race” between drivers and suppressors is not
only driven by selection but also by the structural constraints of the chromosomes themselves. In
particular, features such as low-recombining regions and chromosomal inversions offer a protective
shield for these genetic elements, influencing both their persistence and their evolutionary trajectories.
Given this, understanding the role of chromosomal organization in these dynamics can provide
deeper insights into the mechanisms that govern selection on sex chromosomes and their broader
genomic implications.
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In summary, I find that previously identified regions on X under strong selection in humans
(referred to as ECHs) and in baboons (disproportionate P.hamadryas or P.anubis ancestry) strongly
correlate with chromatin A/B-compartments in some stages of spermatogenesis in rhesus macaque
(Macaca mulata) inferred by PCA from either a chromosome-arm (conventional) viewframe or a 10
Mb viewframe (local). The regions under selection are associated with regions of low diversity and
low ILS on the X chromosome across all the great apes.

Briefly, an array of significant intersection and proximity is observed when comparing ECH regions
baboon regions with the 1bp limit of A/B compartments. Most notably, spermatogonia, spermatozoa,
and pachytene spermatocyte was both significantly proximal to baboon regions and intersecting
ECH regions. This suggests relationship between strong selection and chromosomal architecture,
and as the selection is specific on X, it could indicate sex-chromosome related mechanisms. A point
against a meiosis-specific mechanisms is that fibroblast intersects the ECH regions, where fibroblast
was used as a control-group for spermatogenesis in Wang et al. (2019).

I duly note that this is purely an explorative and correlational study, requiring further testing to
conclude a relationship between chromosomal organization and selection, even if my analysis
yields statistically significant results. To provide a more solid foundation for this inference, the next
steps could include:

• Include compartment metadata in the correlation, such as weighing by insulation score, or
filter out edges that have adjecent missing values

• Recall compartments using higher-resolution matrices, or call TADs
• Analyze Hi-C spermatogenesis data in other great ape species (e.g. baboons)
• Use a more distant relative as a control group (e.g. the mouse data from Wang et al. (2019))

Until then, let us remain cautious in our interpretations, recognizing the complexity of the systems
at play and the need for further investigation to validate the potential links between chromosomal
architecture and selective forces. In the meantime, let us appreciate the complexity of a multi-species
correlation between selection and the 3D architecture of our chromosomes, a region of considerable
interest with many aspects still to be understood and explored.
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A Appendix

Data Availability

All code, text, and files used for this project are available on https://github.com/munch-group/hic-
spermatogenesis with instructions on how to reproduce.
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5 Conclusion and future work
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